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Abstract − Numerical simulations (using finite volume 
method) of the flow of a viscous fluid through a measuring 
tube were performed to identify the effects of different inlet- 
flow conditions on the performance of a straight, slender-
tube, Coriolis flowmeter. The magnitudes of the anti-
symmetric fluid forces and the twisting moments acting on 
the measuring tube were compared with results from a one-
dimensional fluid-flow model. Simulations were made for 
some hypothetical inlet-velocity profiles that represent 
extreme cases of various flowmeters’ installation positions 
and flow regimes in a pipeline. No significant effects of the 
modelled inlet-velocity profiles on the performance of the 
flowmeter were observed. 

 
Keywords: Coriolis flowmeter, velocity profile, 

numerical simulation. 
 

1.  INTRODUCTION 
 
The primary sensing element of a Coriolis flowmeter is a 

measuring tube that conveys fluid and is maintained 
vibrating at its natural frequency. The fluid that flows in the 
vibrating tube is subjected to the Coriolis force, the 
magnitude of which is proportional to the product of the 
fluid’s mass flow rate and the local angular velocity of the 
vibrating tube. Due to the Coriolis force the tube’s mode 
shape becomes anti-symmetric, the effect which is exploited 
as the basic measuring principle. 

The installation effects – including the influence of 
pulsating and two-phase flows, the effects of fluid pressure, 
fluid temperature and the external vibrations – on the 
performance of flowmeters have already been thoroughly 
studied, but very few attempts have been made to determine 
the effects of the inlet-flow conditions.  

Durst and Raszillier [1] studied fully developed flow in a 
tube rotating around an axis perpendicular to its own. The 
existence of secondary flow, which occurs in a rotating tube, 
is also predicted for the vibrating measuring tube, where it 
might be an additional source of anti-symmetry in the tube 
oscillation. 

Cheesewright, Clark and Bisset [2] experimentally 
investigated the effects of swirl and velocity-profile 
asymmetry in the inlet flow. Flow disturbances were 
introduced by the insertion of partial blockage plates at the 
upstream flange (asymmetry) and a helically twisted strip 
(swirl) in the upstream spool pipe. Tests were carried out for 

three different types of commercial flowmeter, and no, or 
only small changes in the flowmeter’s calibration were 
observed.  

Hemp [3] applied the weight vector theory to a simple 
flowmeter configuration consisting of an unsupported 
straight tube unattached to adjacent piping. He showed that 
the sensitivity of a flowmeter depends, in part, on interaction 
of the velocity profile with the fluid vibration near the ends 
of the tube. When these end effects are taken into account 
the flowmeter reads lower than it would do if the end effects 
are ignored. Because of the end effect an increase in the 
sensitivity is predicted for turbulent flow.  

In this article the effects of inlet-velocity profiles on the 
performance of a straight, slender-tube, Coriolis flowmeter 
were studied using the commercially available Comet code 
[4], which is based on finite volume method. The velocity 
and pressure fields in the tube, as well as the magnitudes 
and the distribution of fluid forces exerted on the tube, were 
investigated. The twisting moment that causes an additional 
deflection of the tube’s mode shape was calculated from the 
fluid force distribution. The comparison of numerical values 
(the magnitudes of the resulting force and the twisting 
moment) with those obtained using the one-dimensional 
model led to a prediction of the inlet-velocity profile’s effect 
on the sensitivity of the flowmeter.  

 
2.  THE ONE-DIMENSIONAL MODEL 

 
 We used a model based on the Euler beam theory and a 
one-dimensional flow field to evaluate the data obtained 
from the numerical simulation. If we consider a measuring 
tube with flexural rigidity EI, mass per unit length M, and 
denote the tube’s longitudinal axis by x, the time by t, the 
lateral deflection of the tube by w(x,t), the mass of fluid per 
unit length by Mf and the uniform fluid velocity in the tube 
by V, the equation of motion is expressed as follows: 

4 2 2 2 2
2

4 2 2 22 .∂ ∂ ∂ ∂ ∂+ = − − −
∂ ∂ ∂ ∂ ∂ ∂f f f

w w w w wEI M M V M V M
x t x x t t

 (1) 

The effects of added masses, external forces, damping, 
pressure and excitation forces were neglected. The terms on 
the left-hand side of (1) represent the tube’s stiffness and 
inertia, these are independent of flow and so describe a 
simple transversal vibration of the measuring tube. The 
terms on the right-hand side of (1), from left to right, 
represent the relative centrifugal, the Coriolis and the 
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inertial translational forces, respectively, resulting from the 
presence of fluid flow in a vibrating tube. 
 The first mode shape W1(x) of the lateral vibration of the 
measuring tube, with fixed ends of length L, in the absence 
of the fluid flow, is obtained from the left-hand side of (1) 
and has the following form [5]: 

 
( )1 1 1 1 1 1

1 1
1 1

1 1

( ) cosh cos

cosh cos sinh sin ,
sinh sin

    = = λ − λ       
λ − λ     − λ − λ     λ − λ     

x xW x C F x C
L L

x x
L L

 (2) 

where λ1 is the coefficient that determines the first mode 
shape and C1 is the factor that defines the amplitude of the 
vibration. In our case λ1 = 4,730 and C1 = A/F1(L/2) and A 
defines the amplitude of vibration in the middle of the tube.  
 The deflection of the tube’s mode shape cannot be 
obtained with a numerical simulation; only the pressure and 
the velocity field in the measuring tube are calculated (fluid 
domain). During the simulation (presented in the next 
section), the shape of the fluid’s computational domain is 
therefore modified according to the first mode shape of the 
measuring tube (2). 
 For the prescribed mode shape (2) the Coriolis effect, 
which is correlated with the anti-symmetric deflection of the 
tube’s mode shape, is most easily estimated from the 
difference between the magnitudes of the resulting Coriolis 
forces on the tube’s left and right halves (Ra,y): 

 
/ 2
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where ω is the circular frequency of the tube. 
 A more precise estimation of the Coriolis effect is 
expected by defining the twisting moment, Ma, around the 
middle of the tube, because the value of the moment 
contains information relating to the force distribution along 
the tube’s length, and not just its magnitude. For 
determining the magnitude of the twisting moment, only the 
Coriolis force, for its anti-symmetry in the middle position 
of the tube, has to be taken into account: 
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3.  NUMERICAL MODEL 

 
 Numerical simulations were performed using the Comet 
code, which is based on the finite volume discretization 
method. This section presents the numerical grid that was 
used in the simulations, the mathematical model that was 
incorporated in the code, the initial and boundary conditions 
of the simulations and the calculation of the resulting force 
difference, Rn,y, and the twisting moment, Mn. 
 
 

3.1. Discretization of the computational domain 
 The computational domain consists of the measuring 
tube, and the inlet and outlet piping sections, the dimensions 
of which are presented (with respect to D) in Fig. 1. The 
inner diameter D for all the sections is equal to 0,01 m. 
 

L = 15D

x

A

Fluid flow

Li = 2D Lo = 10D

y

 
 Fig. 1. Scheme of the computational domain 

 
The numerical grid used in the simulations consisted of 

73340 cells (finite volumes). The cells representing the 
measuring tube were uniformly distributed in the axial 
direction, while the distances between the centres of the 
cells in the inlet (outlet) region are increased by a factor 1,03 
towards the beginning (end). Number of cells of the 
numerical grid is listed in Table I. 

The appropriate numerical grid was selected after a 
comparison of the results obtained on three different grids 
(the first was 1,3-times coarser and the second 1,4-times 
denser, than the selected one). The values of the fluid forces 
and of the twisting moment were compared. For all three 
grids the compared values deviated by less than 0,1 %. 

 
TABLE I.  Number of cells of the selected numerical grid  

Total 73340 
In cross-section 380 
In the axial direction 180 
- Measuring tube 150 
- Inlet 8 
- Outlet 35 

                                        
3.2. Mathematical model 

 The basic equations used for the description of fluid flow 
in Comet are presented in this section. The model is 
presented for isothermal and incompressible fluid flow. For 
a fluid with density ρ, fluid velocity vector v, and surface 
velocity (of the finite volume) vs, the continuity and 
momentum equations are: 

 ( )d d 0∂ ρ + ρ − =
∂ ∫ ∫ s

V S

V
t

v v s   (5) 

and  

 ( )d d d d∂ ρ + ρ − ⋅ = ⋅ +
∂ ∫ ∫ ∫ ∫s b

V S S V

V V
t

v v v v s T s f , (6) 

where fb represents the vector of forces acting on the fluid 
volume and T is the strain tensor, which is defined as: 

 ( )2 22 div div
3 3

 = µ − µ − + µ + ρ 
 

i

e e tp kT D v I v I , (7) 

where  
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 ( )( )1 grad grad 
2

= +
i TD v v   (8) 

is the rate of the strain tensor, p is the pressure, I is the unit 
tensor and µe is the effective viscosity of the fluid defined as 
the sum of the dynamic µ and the turbulent µt viscosities: 

 µ = µ + µe t  (9) 

The turbulent viscosity is obtained by using the standard k-ε 
model: 

 
2

µµ = ρ
εt

kC , (10) 

where k is the kinetic energy of the turbulence and ε is its 
dissipation rate. Their values are obtained by solving their 
respective transport equations: 
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The quantities Cµ C1, C2, C3, σk and σε are empirical factors. 
Their values are given in Table II.  
 For simulations at Re = 400 the turbulence was not 
modelled, which means that the values of µt is equal to 0. 
 

 TABLE II. Values of empirical factors used in the standard 
k-ε turbulence model 

Cµ C1 C2 C3 σk σε 
0,09 1,44 1,92 -0,33 1,0 1,3 

 
3.3 Initial and boundary conditions 

 The first mode shape of the fixed-fixed Euler beam was 
used to model the vibration of the tube. By taking into 
account the expression in (2) a lateral deflection of the tube 
with respect to the coordinate x and the time t can be written 
as: 

 ( ) ( ) ( )1 1, cos= ωw x t W x t  (13) 

 The amplitude of vibration in the middle of the tube (A) 
was equal to L/300. The vibration of the tube was simulated 
using the moving-grid option, which starts when the fluid 
flow in the tube reaches its steady state. A single period is 
modelled with 130 time steps. The numerical results 
obtained were always observed when the periodic regime of 
the flow in the vibrating measuring tube was reached, this is 
because the transient regime is of no importance for mass 
flow measurements. 
 Fig. 2 shows the hypothetical inlet velocity profiles that 
may occur as a result of various installation positions of the 

flowmeter. Each profile is denoted with a letter written next 
to its name in the legend of Fig. 2. In the case of the 
triangular and the uniform-velocity profiles, swirl was also 
introduced on the inlet (these simulations are marked with 
the letter S). The circumferential swirl velocity in the inlet 
cross-section is defined as: 

 ( ) = αv
rv r V
R

, (14) 

where the coefficient α represents the ratio between the 
maximum swirl velocity and the average axial velocity, V, 
and the ratio r/R is the dimensionless radial position. The 
coefficient α was taken to be 0,1 and 0,25, respectively. In 
addition to these profiles, fully developed laminar and 
turbulent velocity profiles (marked with the letter D in the 
reminder of the text), were also used as inlet boundary 
conditions. Fully developed velocity profiles were obtained 
from a preliminary simulation of fluid flow in the tube at 
rest. 
 The simulations were made for Re = 400 and 20000, 
using the tube vibrating frequency of 100 Hz. 
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Fig. 2. Inlet-velocity profiles: a) with increased velocity in the 

middle - C, b) with increased velocity near the walls - W,              
c) triangular - T, d) uniform - U 

 
3.4. Evaluation of the fluid forces and the twisting 

moment 
 The fluid forces acting on the tube’s wall are calculated 
from the pressure field that results from the numerical 
simulation. As was mentioned at the beginning of this 
section, the measuring tube is divided in the axial and 
circumferential directions. So the idea is first to sum up the 
forces acting on the boundary elements of a single ring 
(which results from axial discretization of the tube) and then 
to sum up the forces acting on the rings of the measuring 
tube. 
 The force acting on the boundary element k in the 
direction of the y-axis can be written as a sum of the friction 
Tk,y and the pressure forces pksk,y, where sk,y is the component 
y of the surface vector of the boundary k: 

 , , ,= +k y k y k k yF T p s .   (15) 
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 From summing up the forces acting on the boundary 
surfaces of a particular ring the force acting on the ring j is: 

 , ,
∈

=∑j y k y
k j

F F . (16) 

 The Coriolis effect can then be then estimated from the 
difference between the forces acting in the direction of the y-
axis on the tube’s left and right halves. Assuming that the 
measuring tube is divided into N equally-wide sections, the 
resulting difference, Ry, equals (Fig. 3): 

 
2

, ,
11

2
== +

= −∑ ∑
N

N

y j y j y
N jj

R F F   (17) 

 The value Ry is calculated for each time position of the 
measuring tube. Theoretically, we could determine the 
magnitude of the force difference in (17) by calculating its 
value in the middle position of the tube, where the Coriolis 
force (as the only anti-symmetric force) reaches its 
maximum value. Because the oscillation of the tube is 
modelled with a finite number of time steps, we cannot 
exactly follow the tube motion in time, so we approximate 
the set of values from (17) for a single oscillation with: 

 ( ) ( ), sin 2= π − φy n yR t R ft , (18) 

where Rny is the amplitude of the resulting force difference, f  
is the vibrating frequency of the tube and φ is the phase 
angle. 
 

j = 1 2 3 4 N /2 N /2+1 N -1 N

L

x

y

D

Fj,y
M

L/2

 
Fig 3. Calculation of the twisting moment 

 
 If we consider that the force acts in the middle of the 
ring’s width, and that the measuring tube is divided 
equidistantly, the twisting moment that acts around the 
middle of the tube (Fig. 3) is calculated as: 

 ,
1

1
2 2=

  = − − ⋅    
∑

N

j y
j

L LM F j
N

, (19) 

where L/N represents the width of a single ring. To 
determine its magnitude, Mn, the same approximation as in 
(18) is used: 

 ( ) ( )sin 2= π − φnM t M ft . (20) 

 
4.  RESULTS 

 
 In this section we compare the numerical results and the 
results from the analytical model. The magnitudes of the 

resulting forces obtained from (3) and (18), and the 
magnitudes of the twisting moments from (4) and (20) were 
compared. The agreement between the numerically and 
analytically obtained values was defined as: 

 ,

,

= n y
R

a y

R
u

R
 and = n

M
a

Mu
M

. (21) 

If uR and uM are equal to 1 then the numerical and analytical 
values are the same. 
 The agreement of the magnitudes of the resulting force 
uR is presented in Fig. 4 for Reynolds numbers 400 and 
20000. It is clear that all the simulations are in relatively 
good agreement with the assumption of the one-dimensional 
model. No significant difference between the various inlet 
profiles at constant Re is observed, although the values of 
agreement from (21) of numerical results for Re = 400 are 
significantly smaller than for Re = 20000.  
 The agreement of values of the twisting moment 
magnitude, uM, in Fig. 5 has practically the same 
characteristics as uR in Fig. 4. On this basis we can claim 
that the comparison of the twisting moment values does not 
give any new information, which means that not only are the 
amplitudes of the fluid forces acting on the tube’s wall the 
same, but also that the fluid force distribution obtained 
numerically might be in very good agreement with the 
analytically predicted one. We have also established that the 
measuring effect is slightly affected by the different 
Reynolds numbers, but it seems that the inlet-velocity 
profiles do not have any characteristic influence on the 
flowmeter’s performance.  
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Fig. 4. Agreement of the magnitudes of the resulting force 
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Fig. 5. Agreement of the magnitudes of the twisting moment 

 
5.  CONCLUSION 

 
Simulations of the flow of a fluid through the measuring 

tube of a Coriolis flowmeter were made for various inlet-
velocity profiles. Numerically obtained values of the fluid 
forces and the twisting moment magnitudes that act on the 
measuring tube were further compared with values obtained 
from a one-dimensional model. From the comparisons made 
we can conclude that the various inlet profiles, which were 
in our case hypothetical, do not have any significant 
influence on the flowmeter’s performance. The results show 
that the sensitivity of the flowmeter might decrease, with 
respect to the linear characteristics predicted by the one-

dimensional model, in the region of lower Reynolds 
numbers. 
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