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Abstract

Linear Regression Analysis (LRA) is a technique
commonly applied in many different branches of science.
The present study investigates the use of LRA in Metrology
and aims to develop a mathematical approach to adequately
take into account its contribution for the uncertainty budget
in a measurement.

In a calibration involving many standards and
measuring instruments, the LRA technique is an important
tool for the estimation of conventional true values based on
certificate results. This statistical treatment usually intends
to reduce the errors measured in the calibration process in
order to achieve lower residual errors. The operation,
however, introduces statistical uncertainties, which can be
of significance when compared with the uncertainty
contributions from other input quantities.

This document also presents the results of a
measurement uncertainty evaluation related to the
calibration of a length measuring machine, including the
LRA contribution based on the application of the
mathematical expression proposed. The relative influence of
this contribution is also investigated.
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1. INTRODUCTION

The calibration of instruments used for metrological
purposes results in measurement errors and related
uncertainties as presented in calibration certificates. The
subsequent use of such instruments usually suggests the
correction of readings so that the systematic effects
determined by the calibration may be reduced. To
implement this procedure Linear Regression Analysis is
usually applied.

As this technique affects the measurement results, it
must be considered as an additional source of uncertainty to
be taken into account in the measurement uncertainty budget
and, therefore, a model for its evaluation is needed.

The present study investigates the use of LRA in
Metrology and aims to develop a practical mathematical
expression to adequately take into account its contribution
for the uncertainty budget in a measurement. An application
to the measurement uncertainty evaluation related to the
calibration of a length measuring machine and the results
obtained (namely, measurement uncertainties and the
relative influence of this input quantity) are also discussed in
the paper.

2. THE MATHEMATICAL MODEL

The further use of calibrated standards and measuring
instruments for metrological purposes commonly involves
the need of correction of the readings using LRA statistical
treatment.

In this type of analysis it is common to use the reference
values, x; (conventional true values with standard
uncertainty given by £ i), and the average values of
readings, y; (Figure 1), taken from an instrument under
calibration, both expressed in a certificate, to estimate the
correction of the instrument readings (within the interval of
calibration) using the expression of the least squares method
given by:

Vi =Bo +BiX; )

Thus having an estimate of the coefficients (B, and B;)

enables an estimate of the corrected values to be evaluated,
according to the next equation.

Yi= bo + blxl- (2)
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Fig. 1 - LRA Reference values, x;, measurement averages,

Vi , and reference values uncertainty, iy .

Now substituting by =y—-bjx and imposing the

translation of x=0 to x=Xx (in order to eliminate the
covariance between the two coefficients by and bq),

transforms equation (2) into expression (3).
vi =y +bylx; —¥) 3)

where the coefficient by is given by the least squares
method [1]:

n
Z(xi _EXJ’,’ —J_’)
b ==L 0
Z(xi‘f)z
i=1

The correction of the readings of an instrument using a
calibration curve based on LRA analysis (Figure 2) means

that, from each reading y; * (or from an average value
based on m readings), the expected reference value, x; *,

can be found, i.e., the expectancy E[xi *| Vi *]
The way to do this is to solve expression (3) for the

quantity wanted ( x; *) and, therefore, obtain the functional
relationship for the measurand:

)

u(x})=2?

v

*
. X
xt i

Fig. 2 - Expected reference value, x; *, obtained from a

measurand, Vi *, and LRA uncertainty to be found, u(xl- *)

This functional relationship may be used as basis for the
evaluation of the uncertainty component due to the
mathematical process, using the Law of Propagation of
Uncertainty [2,3] or by applying the variance operator. We
have opted for the former.

3. UNCERTAINTY EVALUATION

The model presented in (5) contains four input

quantities:
:f(ql'):f()_@yl’*sysbl) (6)

The Law of Propagation of Uncertainty applied to (6)
yields the general formulation:

u2<x,.*>:2[§;j) )

(7

+2ZZ[6 qu{a qJ (a:)ula,) rlaioa;)

i=1 j=i+l

where r is the correlation coefficient.
In order to compute this uncertainty it is necessary to
evaluate the derivatives and to estimate the uncertainty of

each input quantity and associated correlation coefficient.
The derivatives related to the given model (5) are:

5'xl»* -7 6)6 1
8)? 6y, bl

ox;* 1 ox;* (J/,‘ _J_/)
) = @®)
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The uncertainty of the input quantities, u(g,), can be

i

obtained based on the following arguments:

Since LRA is based on a set of n calibration pairs (x;, y;),
each one based on £ replicates, the uncertainty related to y

is evaluated by,

2
w? ()= ©)

whereas the evaluation of the uncertainty related to the
coefficient by [4] yields:

(10)

i=1

In the last two equations, s° is the variance of the residuals

obtained by LRA, ¢&;;, estimated using equation (11).

2
n k
2 1
s = ..
=PI

i=1j=1

(11)

The uncertainty of each x; can be obtained from the
calibration certificate either directly or, if the expanded
uncertainty is declared (with a coverage factor of k), using
the expression: u(xi):ix/ k. Applying the Law of

Propagation of Uncertainty to the statistical expression of

n
the average, X = X x; /n, the uncertainty of this quantity is
i=1

i 2
given by: uz()?) =X
n

Finally, the uncertainty related to y; *, which is taken as

an average of m readings, can be obtained from:

2
uz(yi *):S? (12)

In the last case, notice the use of the same estimate s,
resulting from the LRA curve, since one of the conditions
required for its application is that the standard deviation of
the population distribution must be constant throughout the
domain. This assumption combined with the fact that y; *

belongs to this domain, justifies the above result.
The last group of elements that need to be estimated are

the correlation coefficients. The general expression used in
statistics to evaluate these coefficients depends of the

variances and covariance of the quantities under study,
according with (13).

COVlCIistJ

”(‘Ij’qj)= G(qi)c(qj)

The mathematical model (5) shows that there are four
input parameters and, therefore, six pairs of combinations to
be treated. However, two of these parameters can be
immediately considered as independent from the

others: Vi *, as it represents the result of a set of

(13)

independent measurements performed with the calibrated
instruments; and X , which results from the values of the
reference standard, x;. The remaining two input parameters

covb‘,bl]

give origin to a single coefficient, r(},bl)zw,
o\y)o\by

which is null, since it can easily be proved that

cov LV,bl]: 0[5].

Taking into account the results presented, the expression
(6) applied to the functional relationship (5) finally gives the
square of the LRA uncertainty:

2 2 % _T
PRSI
b12Z(xi_;)2
i=1

which is in accordance with [6].

4. CALIBRATION EXAMPLE

The case under study is related with the calibration by
direct comparison of the measurand, of a 1-dimensional co-
-ordinate measuring machine in the range of 0 mm to 100
mm, using as reference standards gauge blocks.

In addition, it can be referred that the instrument to be
calibrated has a resolution of 0.1um, that the block gauges
were calibrated in an accredited laboratory and that the
calibration certificate issued states an uncertainty of:

Ugﬂébi):i(4810_2+19]0_4L)um (15)

where L is the length expressed in mm and the uncertainty is
given with a coverage factor of 2.00.

The study took as reference a set of eight block gauges
(giving origin to n=8 calibration pairs), with nominal values
between 1 mm to 100 mm, and each calibration pair was
achieved from averages obtained from 10 replications
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(k=10). The measurements were made in a laboratory under
controlled  temperature = and  humidity  conditions
(20°C £ 0.3°C and 50 %rh £ 5 %rh) in order to limit its
influence in the length measurement. The results that were
obtained are shown in table 1.

TABLE 1 - Calibration pairs and repeatability

Conventional Measurements Repeatability
true values average values
x; (mm) i (mm) (mm)
0.99995 0.9999 58-107°
2.00002 2.0000 9.8-10°°
5.00003 4.9999 53-107°
10.00005 9.9998 7.1-10°°
25.00005 24.9997 7.1-107°
49.99990 49.9991 7.5-107°
74.99990 74.9987 58-10°°
99.99989 99.9984 7.8-107°

The analysis of the residuals under Gauss-Markov
conditions showed that LRA could be applied. With these
pairs, the coefficient b; and the correction equation can be
obtained using (4) and (5), respectively:

by =0.999985127 (16)
(v; ¥-33.4994375)
xj* = 3349997375+ (17)
0.999985127

The expression (17) allows the correction of a single
reading and also of the average of m readings performed
with the calibrated instrument. However, this correction has
an uncertainty contribution given by (14). To calculate it,
two general steps must be followed.

The first step in evaluating the uncertainty is to find the
values or the expressions that are taken into account. In this
particular case, i, is the gauge blocks contribution obtained
from lU 95% (x I )/ 2] um , n is the number of pairs used in

the LRA (n = 8), the value of the coefficient b; is given by
(16) and the s° estimate is based on (11), which gives:

52 =5.4525-107° mm? (18)

The second step is to use these results, and obtain the
expression for the LRA uncertainty according with (14):

u?(x; *)=(7.2~10_“+4,5~10_15L2j mm® +

3 (19)
11 (y*-33.4994375) 5
—+—+ 3 mm
m 8 99016763 10

+5.4527-10‘9[
where L is approx. equal to x; * and represents the length
expressed in mm.

This uncertainty depends on two quantities, y; * and m.
Therefore, further analysis should review their influence.

The quantity m represents the number of replicates,
namely 10, therefore the use of (19) results in uncertainty
values which, in this case, varies from 3.508x10° mm
(minimum at 33 mm length) and 6.066x10”° mm (maximum
at 100 mm length). Considering 1 mm steps between
consecutive computations, Figure 3 shows the results
obtained in the range of 1 mm to 100 mm, with the expected
minimum value at 33 mm (Xx), the global maximum at
100 mm (and a local maximum at 1 mm).

LRA uncertainty in the calibration range
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o

Figure 3 - LRA uncertainty in [1 mm, 100 mm]

With the knowledge of these extreme values, a study can
be carried out in order to evaluate the influence of the
quantity m in the LRA uncertainty (19). Considering these 3
values (1 mm, 33 mm and 100 mm) and a parametric study
of m between 1 and 80, Figure 4 shows that for readings
between 1 and 10 an important gain can be achieved with a
decrease in LRA uncertainty, whereas for m greater than 10
there is no significative gain in uncertainty decrease (for m
higher than 10, the gain increase relative to a single
measurement is lower than 10 %).

LRA uncertainty vs. m (dimension of set)
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Figure 4 - LRA uncertainty vs. m
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Another interesting analysis results from the comparison
between the LRA contribution against other major
contributions to the uncertainty evaluation, as is the case
with the reference block gauge uncertainty, the instrument
resolution and the instrument repeatability. Figure 5 shows
the absolute values of these components for the case where
m=10, expressed for the points taken in the regression
analysis, showing that LRA contribution is the highest. The
points related with the global uncertainty were estimated
neglecting the temperature effect, since this contribution
depends on factors that are external to the calibrated
instrument  (laboratorial room ambient temperature
behavior).

Major contributions to the global measurement
uncertainty (without the temperature influence)
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Figure 5 - Intrinsic contributions to measurement
uncertainty

This simple example underlines the type of information
that can be obtained by the evaluation of the LRA
uncertainty contribution, namely, the range and selection of
points and number of replicates that should be considered in
the calibration process, the selection of the number of
replicates to use in order to perform measurements with the
instrument under specified accuracy and the ability to
compute measurement uncertainties considering the LRA
contribution.

5. CONCLUSION

Considering the wide use of LRA as a technique applied
in the correction of values from measuring instruments, the
implementation of the mathematical approach presented in
this study is scientifically relevant and has a broad range of
application.

The computation of the uncertainty related with the use
of LRA can be nuclear, depending on the relative
importance of its value in a measurement overall uncertainty
budget, but its use has not been reported often.

The study carried out in this paper aims to discuss and
find a practical expression for the LRA uncertainty
contribution to the measurement standard uncertainty, and to
study the influence of its parameters.

When it is intended to go further and obtain the
measurement expanded uncertainty to a certain confidence
level, this contribution can acquire a larger importance,
namely, due to the role of the degrees of freedom in the
determination of the coverage factor (Welch-Satterthwaite
formula [2,3]).

Considering the example given in this work where the
number of degrees of freedom is low: 6 (=n—2), it was
shown that the LRA uncertainty was the major contribution
towards to the final uncertainty result. Thus, if this value is
taken into account in the evaluation of the number of
effective degrees of freedom (Welch-Satterthwaite formula),
certainly a lower value would be obtained, leading to a
coverage factor considerably higher than the usual k=2.00
(95% of confidence level). An important conclusion to be
drawn is, therefore, that the number of pairs considered in
the LRA analysis is an important parameter to be considered
when specified levels of accuracy need to be achieved.
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