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Abstract − Co-ordinate measuring machines (CMMs) 
are often used for calibrating different kinds of squares. A 
procedure for calibrating squares on the CMM Zeiss UMC 
850 was developed in our laboratory to cover primarily 
industrial needs. The uncertainty analysis that was 
performed for this procedure is introduced in the article. The 
most important uncertainty contributions were evaluated 
experimentally. Many experiments were also performed in 
order to find the most appropriate calibration position in the 
CMMs measurement space. About 2000 measurement 
points were taken in order to get reliable results for 
uncertainty components. The analysis results expressed as 
the best measurement capability were checked by 
participation in the Euromet 570 project, which has not been 
finished yet. The current value of the best measurement 
capability is 0,9 arc sec. 
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1.  INTRODUCTION 
 
Squares of different shapes and sizes made of different 

materials like granite, steel and ceramics are used in 
laboratories and in industry for materializing squareness [1]. 
Uncertainty of calibration of a square represents a limitation 
for its use. Since the uncertainty mostly depends on the 
measurement instrument and the procedure used for 
calibration, it is very important how to calibrate squares 
with different requirements regarding accuracy.  

In our laboratory we mostly calibrate squares for 
industrial use and squares for checking axes squareness on 
CMMs. Considering the required limit uncertainties we 
decided to develop a procedure for calibrating squares on 
our CMM Zeiss UMC 850 [2]. The uncertainty analysis has 
shown that this procedure can cover all the current needs. It 
is important to mention at this place that similar methods 
have already been developed in different laboratories. 
However, an original approach for evaluating uncertainty 
regarding the measuring position was developed and 
validated for this procedure.  

 
2. CALIBRATION PROCEDURE 

 
The square is fixed on the fixing plate in the predefined 
position in X-Y plane of the CMM. The shorter edge should 
be parallel to X axes. 

Fig. 1.  Square measurement positions 
 
This position was defined by experimental evaluation of 

measurement results. Fifteen different positions were tested 
(5 in X-Y plane, 5 in X-Z plane and 5 in Y-Z plane). In each 
of these positions we have tested 2 reversal positions 
regarding the reference and the measured edge. The tests 
were performed several times in different environmental 
conditions in order to extract systematic influence of the 
square position. 

The criterion for the selection of proper position was 
repeatability of the results in single points. The stability of 
moving elements and the probing system were tested in this 
way. Every edge was probed in 50 predefined points. The 
calculated repeatability results for three positions in each  
co-ordinate plane are presented in Table I.  

 
TABLE I.  Repeatabilities of angle measurements in different 

locations of the 3D measurement space 

Location Plane Repeatability in arc. sec. 

1 . 1,2 
2 X-Y 0,8 
3  0,6 
6  1,7 
7 X-Z 2,4 
8  2,8 

11  1,8 
12 Y-Z 1,4 
13  1,9 
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Location 3 from Table I was chosen as a calibration 
location. The intersection corner of measured lines (the 
lower left corner of position A in Fig. 1) has the co-
ordinates X = 200 mm, Y = -950 mm and Z = -400 mm in 
the CMM’s co-ordinate system. Those co-ordinates do not 
need to be set very precisely. 
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2.1.  Measurement of deviations 
The square is mechanically adjusted along the shorter 

edge in the position A (Fig. 1) before measurement. The 
deviation of final adjustment (difference of Y co-ordinates 
of two probed points) should not exceed 0,3 µm. When the 
square is adjusted, a straight line is probed on the longer 
edge. Starting and ending probing points should be 30 mm 
apart from the edges of the square. The measurement is 
repeated three times. After that the measurement procedure 
is repeated in the position B. New mechanical adjustment is 
necessary when turning the square for 180° in position B. It 
is very important that the reference (shorter) line is on the 
same location as in the position A. It is also important that 
the probing points in position B has the same co-ordinates 
along probed lines as in the position B. Positions of probing 
points (co-ordinates X and Z for the shorter line and co-
ordinates Y and Z for the longer line) are preprogrammed. 

Squareness deviation between the CMM’s X and Y 
guides is eliminated from the final result by turning the 
square from position A to B. Since the guides also have 
some straightness deviations, the squareness of different 
segments of X axis to Y axis may differ. Zherefore it is very 
important that the square is put exactly into the same 
segment of X axis after being turned into position B. 
 

2.2.  Calculation of measurement results 
Arithmetic means of the angles of measured lines (from 

three measurements) in positions A and B are calculated. 
The results are recorded into the table of measurement 
certificate. Standard deviation of these results comprises the 
repeatability of the CMM as well as the quality of the square 
edges. If the result is negative, the straight line is in second 
quadrant. This means that the angle of the square is greater 
than 90° in position A and smaller than 90° in position B. 
Square angle deviation from 90° is calculated by the 
equation: 

 
2

)A()B(
square

α−α
=α∆ . (1) 

where: 
α(A) - angle in position A indicated by the CMM 
α(B) - angle in position B indicated by the CMM 

Indicated angles α(A) and α(B) comprise angular 
deviation of the asquare and the CMM measurement  
deviation (error). In position A the CMM error is added to 
the angular deviation of the square, while in position B it is 
subtracted from the angular deviation of the square, as 
explained in Fig. 2. It is very important to consider the way 
the CMM express measured angle (+ /-) in order to get right 
sense of the square angle deviation.  The case in Fig. 2 is 
drawn for the measuring position X-Y (Fig. 1). 

Equation (1) is used for establishing the mathematical 
model of measurement in the uncertainty evaluation.  

Fig. 2. Indicated angles (αA, αB), square angle (αs) and  
CMM error (∆α) 

 
3.  UNCERTAINTY OF MEASUREMENT 

 
3.1.  Mathematical model of measurement 
Angular deviation ∆αsquare (calibration result) is given by 

the equation: 

 
2

)()( A1p2pB1p2p
square

α+α−α+α
=α∆ . (2) 

where: 
αp2 - measured angle between the longer square edge and Y 

axis of the CMM (measurement result) 
αp1 - actual angle between the shorter square edge and X axis of the 

CMM (supposed to be 0, because the square is mechanically 
adjusted) 

Indexes A in B define measurement position (see Fig. 1) 

Thermal deviations are not considered in the above 
equation because their influence on angular measurement is 
not significant. It is supposed that the square material is 
isotropic and that the shape is not changed when the 
temperature deviates. 

 
3.2.  Standard uncertainties of the input values 
In (1) we can see that there are 4 input values in this 

measurement. Equation for calculating combined stabndard 
uncertainty in [3] gets in our case the following form: 

 u )=c αp2B
2u2(αp2B) + cαp1B

2u2(αp1B) +  2(αkotnika

 + c αp1A
2u2(αp1A) (3)  αp2A

2u2(αp2A) + c

where ci are partial derivatives of the function (2): 

c αp2B = ∂f/∂αp2B = 0,5 
cαp1B = ∂f/∂αp1B = 0,5 
c αp2A = ∂f/∂αp2A = 0,5 
cαp1A = ∂f/∂αp1A = 0,5 

Standard uncertainties of influence (input) values are 
calculated (estimated) from experimental measurements in 
LTM on CMM UMC 850 as standard deviations. 

However, the standard uncertainties of input values in 
point A are evaluated in the same way as in point B. 
Therefore it is supposed that the values of the uncertainties 
in point A are equal to uncertainties in point B (u(αp2B) = 
u(αp2A) and u(αp1B) = u(αp1A)). Consequently, we deal only 
with two uncertainty components u(αp2) and u(αp1), but the 
first one is influenced by two CMM geometric uncertainties.  
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TABLE II.  Uncertainty components 

Uncertainty 
component Influences Final expression 

uncertainty of probing and 

u(αp2) uncertainty of squareness 
22

2p )s(u)t(u)(u +=α  

u(αp1) uncertainty of mechanical 
adjustment u(m) u(αp1) = u(m) 

calculating the line u(t) 

between x and y axis u(s) 

 
All uncertainty components are of type A [3]. The 

uncertainties of probing (influence of the probing system) 
and calculating (calculation algorithm) are joint, since the 
calculating algorithm is not exactly known and is therefore 
hard to evaluate the uncertainty. 

 
4.  EXPERIMENTAL ANALYSIS OF STANDARD 

UNCERTAINTY 
 

All standard uncertainties of input values (Table II) were 
evaluated by statistical analysis of measurement results [4].  

 
4.1.  Standard uncertainty u(αp2) 
Standard uncertainty for probing and calculation of the 

line was evaluated as a standard deviation of thirty 
measurements on one line in a fixed position. Twenty 
measurement points were taken along the measured line. 
The positions of measurement points were the same (within 
certain positioning uncertainty) in all measurements in order 
to eliminate the influence of the square shape deviations. A 
line angle was calculated after each measurement of the 
edge in 20 points. The standard deviation from 30 line angle 
calculations (Fig. 3) was: s = ut = 0,15 arc. sec.. 

Standard uncertainty of squareness between X and Y 
axes was evaluated as a standard deviation of thirty 
measurements on the same square in the same measurement 
line in different positions of the square. The square was 
moved after each line measurement (in 20 points) in X axis 
for about 10 mm and the measurement was repeated in the 
next position in the same points as in previous measurement. 
The standard deviation from 30 line angle measurements 
(Fig. 4) was: s = ut = 0,26 arc. sec.. 

Considering the equation in Table II, the standard 
uncertainty of the angle of line p2 is: u(p2) = 0,3 arc. sec.. 
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Fig. 3. Results of 30 line angle measurements on fixed location  
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Fig. 4. Results of 30 line angle measurements on different locations  

 
The results shown in Fig. 3 and Fig. 4 show random 

behaviour. No trends or correlations can be observed 
between different measurements. An obvious conclusion is 
that the main influence on measurement deviations is caused 
by repeatability of the linear measurement system and the 
probing system.  

 
4.2.  Standard uncertainty u(αp1) 
Standard uncertainty was evaluated as a standard 

deviation of thirty line angle measurements on the adjusted 
square edge. The lines were calculated from 20 points. Such 
experiment was performed in different measurement 
positions. The standard deviation from 30 line 
measurements was: s = ut = 0,51 arc. sec.. 

Standard deviations were very similar on different 
positions. Worst case was used as an uncertainty 
component. Results of this worst case are shown in Fig. 5. 
As in both measurements on the long edge, no systematic 
behaviour of the results can be observed here. Even when 
the CMM was turned off and on again, no systematic 
deviations could be found. Comparison of the results on Fig. 
5 with those on Fig. 3 shows better repeatability of the 
probing system in X than in Y direction. The same 
conclusion has been made during number of calibrations of 
the probing system on short gauge blocks. The test of the 
algorytm for calculating the line through 30 points using 
least square method has shown negligible influence on the 
result.  

  

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

No. of measurement

A
bs

ol
ut

e 
an

gl
es

 in
 a

rc
. s

ec
.

 
Fig. 5. Results of 30 angle measurements on the short line  
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TABLE III: Uncertainty budget 

Value 
Xi 

Standard 
uncertainty Distribution Sensitivity 

coefficient 
Uncertainty 
contribution 

αp2B 0,30 arc. sec. normal 0,5 0,15 arc. sec. 
αp1B 0,51 arc. sec. normal 0,5 0,26 arc. sec. 
αp2A 0,30 arc. sec. normal 0,5 0,15 arc. sec. 
αp1A 0,51 arc. sec. normal 0,5 0,26 arc. sec. 

   Total: 0,42 arc. sec. 
 
4.3.  Combined standard uncertainty 
The calculation of the combined standard uncertainty is 

presented in Table III. Normal distribution was taken for the 
experimental results although the results have shown very 
random behaviour. Total (combined) uncertainty was 
calculated using equation (3).  

 
5. EXPANDED UNCERTAINTY 

 
Coverage factor [3] k=2 was used for the calculation of 

the expanded uncertainty. This factor is recommended by 
EAL in order to assure 95 % level of confidence to the 
clients. It is rounded up to: 

U =  0,9 arc. sec. 

 
5. INFLUENCE OF THE CALIBRATED OBJECT 

 
The uncertainty budget presented in chapter 4 does not 

include influence of the square shape. It is evaluated for an 
ideal case and can be also expressed as the best 
measurement capability of the laboratory respective to the 
CMM, environmental conditions and the calibration 
procedure. However, in reality we deal with very different 
artefacts. Some of them have damaged surfaces or are made 
in low quality. It is not possible to state the above 
uncertainty (U =  0,9 arc. sec.) for  such bad squares. 
Therefore, the quality of both measured edges is checked 
before each measurement. The checking procedure is not as 
detailed as the procedure described in chapter 4. A quick 
check of repeatability is made in 10 points for each 
measured edge. Each point is probed 4 times. Repeatability 
is evaluated by standard uncertainty. If this value is greater 
than the predefined value (see the above description), this 
value is taken for the uncertainty evaluation. Special excel 
programme was written and evaluated for such cases. 

 
6.  CONCLUSIONS 

 
The analysis has shown that the uncertainty is strongest   

influenced by the repeatability of the probing system and by 
the X guide deformations. This deformation causes changes 
of squareness between X and Y axes while moving the 
probe along X axis. Therefore it is very important how to 
locate the square before calibration.  Since it is expected that 
these two parameters are changing with time, regular tests 
are planned to be performed every year and of course after 
each calibration and any adjustment made on the CMM.  
Current results show sufficient accuracy of the procedure for 
our (current) customers. It is important to mention that the 

results were rounded up and that worst cases of 
experimental results were taken as uncertainty components 
in order to be on “the safe side”. Our opinion is that the 
uncertainty could be even lower for special calibration 
locations and by applying advanced experimental 
evaluation. But first we will wait for the Euromet 
interlaboratory comparison results, which will indicate the 
correctness of the uncertainty evaluation in the best possible 
way. 
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