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Abstract − In practice, quantization of a measured 

quantity often significantly influences observation 
values. A typical example is found in measurements 
using digital instruments. In some cases, due to the 
quantization, no dispersion is observed among repeated 
measurements. The type A evaluation then gives zero 
standard uncertainty. In such a case, the most common 
practice is to assume, as an a priori distribution in type B 
evaluation, a uniform distribution, the width of which is 
given by the quantization interval, and take the width 
divided by square root of 12 as the standard uncertainty. 
 This practice, however, is justified only when the 
population standard deviation is exactly zero. But 
generally this condition does not hold true even if the 
sample standard deviation appears to be zero. In the 
present study, we use the Bayesian approach to evaluate 
the uncertainty of a measurement based on quantized 
data with due consideration to the difference between the 
standard deviation of the apparent sample and the 
population standard deviation. 

We assume that the quantity before quantization 
obeys a normal distribution having the average µ and 
standard deviation σ.  A measurement data corresponds 
to a value of the quantity after quantization.  Based on a 
specific combination of n repeated measurements, we 
can construct the probability density p(µ, σ) using the 
Bayesian method. The standard deviation of the 

function, ( ) ( , )p p dµ µ σ σ= ∫% , in terms of µ gives the 

uncertainty of the measurement result. We have shown 
that when all of the measurement data take the same 
value, the conventional type B evaluation described the 
above results in an underestimate of the uncertainty, if 
the number of data is less than five. Analysis is also 
conducted in cases in which not all of the data take the 
same value. 
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1. INTRODUCTION 
 

 
Since issued, the Guide to the Expression of 

Uncertainty in Measurement (GUM) has been a useful 
common scale used in a number of fields to indicate the 

reliability of measurement [1]. However, several 
common problems still occur in these fields. One of 
these problems is the determination of uncertainty 
associated with quantization. 

Concerning the uncertainty associated with 
quantization, the GUM describes an evaluation based on 
the resolution of the indicating device (scale interval ∆) 
(GUM F.2.2.1). According to this description, the type B 

evaluation is often conducted using 12∆  as 

uncertainty for the scale interval ∆. In most cases, this 
evaluation is formulary.  The uncertainty associated with 
quantization influences observation values when the data 
is uniform rather than when the data is dispersive. If all 
of the measurement data is identical, for example, if, due 
to the quantization, no dispersion is observed among 
repeated measurements. The type A evaluation then 
gives zero standard uncertainty. In such a case, the most 
common practice is to conduct the type B evaluation. 
This evaluation, however, may not always give 
appropriate uncertainty because the population standard 
deviation may not be zero even if the sample standard 
deviation appears to be zero.  Under these circumstances, 
we need to review the selection of indicating device. If 
the necessary accuracy is well satisfied or an actual 
benefit cannot be expected from a new indicating device, 
the best estimation of uncertainty under the current 
conditions is preferable. 

In the present study, we take the Bayesian approach to 
evaluate the uncertainty of measurement data associated 
with quantization. By using the Bayesian theorem, we 
can estimate the useful uncertainty from empirical 
information [2]. In the population of measurement data 
before quantization, the probability distribution having a 
parameter (µ, σ) is assumed as a probability variable. By 
using the Bayesian approach with the parameter (µ, σ) as 
the variable {µ, σ}, the average dispersion is estimated 
from the characteristics of prior probability on the 
variable plane and posterior probability estimated by n -
times repetitive measurement. 
 

2. QUANTIZATION 
 

2.1. Resolution of indication device 
Measurement data can be obtained from the 

indication device of some instruments. Most instruments 
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almost have a digital indication device. Generally, the 
quantization error is not a significant problem. This 
means that the influence due to the resolution of the 
indication is negligible compared to the combined 
standard uncertainty. In contrast, when the resolution is 
not sufficient, errors due to quantization occur. 

Consider s(qk), the experimental standard deviation 
of  repeated observations qk of a normally distributed 
random variable having parameter (µ, σ). When the data 
is quantized. 

2 2 2
k( ) ( )u s qδ σ= −   (1) 

k

( ) is the uncertainty of quantization error

( ) is the experimental standard deviation 

u

s q

δ
 

If we obtain enough data for the estimation of the 
parameter, the mean including error is as shown in 
Figure 1, and the standard uncertainty associated with 
quantization error was estimated like as Figure 2. 
 

2.2. Problems 
These figures show results for ideal occasions. In fact, 

due to limited sampling, the estimation value of 
uncertainty can be larger at the small observation 
number or small experimental standard deviation.  

The data were sampled from a distribution having 
parameter (µ, σ) that we cannot actually know. 
Especially, in the case of the experimental standard 
deviation under ∆, some significant influence on the 

estimation occurs since that the data does not dispersion 
due to quantization. 
 

3. THE BAYESIAN APPROACH 
 

3.1.  Assumptions  
Measurement data can be considered as a sample 

from a distribution having parameter (µ, σ) that we 
cannot know. An acquired quantity value is handled as 
measurement data after quantization. Since the sample 
data is from an unknown probability scatter, the 
estimation is simplified on the basis of the following 
assumptions: 

 
AAssssuummppttiioonnss  
[ A1 ] observations are samples from a normal 

distribution 
[ A2 ] This event has indicating values for not more 

than three ranged values 
[ A3 ] prior probabilities of variable; p{µ, σ} are 

identical 
 
3.2.  Event  

The mean value from observed values is taken as a 
measured value. In the present study, from the number of 
observations and the number of indicated values, we 
obtain a mean value and its uncertainty using the 
Bayesian Approach (referred to hereafter as B.A.). 

From Assumption [A2], an event can be described as 
follows: 

[ ]E a b c=   (2) 

1

1

 is the number of the indicating    observations

 is the number of the indicating    observations 

 is the number of the indicating    observations 

k

k

k

a X

b X

c X

−

+

 

 
Observed values obtained thus far are digitized 

output (Fig. 3). We pursue the probability of event ‘E’ if 
we assume data to be acquired from a normal 
distribution.  

Assuming a probability density function of normal 
distribution ( , )N µ σ shows the probability mass of the 

quantized value that can be obtained as an observed 
value is pursued as follows:  
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An event ‘E’ indicates that the types of data value are 
three continuous values. And a, b, and c are the number 
of the continuous values. 

The probability of appearing is given as the next 
equation by the number of each indicated value.  
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  (4) 

Now, we consider that the parameter { ,µ σ } is a 

random variable in a set-space. The space setting affects 
accuracy of the final estimations and should be meshed 
to calculate the posterior probability. These meshed 
intervals also affect the accuracy of the final estimations. 
Figure 4 shows an example of calculation of the event 

[1 5 2]E = . In the space, the posterior probabilities for 

each argument in the setting and meshed space are 
estimated based on Bayes' theorem. Expectation of mean 
and dispersion of mean when event E occurred can be 
decided based on the characterized probability density 
function estimated from this space. 

We assume that all the prior probability is equal, so 
that the expectation of mean is not a complicated 
equation. We meshed the space by δµ and δσ.  

The probability density of the posterior probability 

{ }( ), |p Eµ σ  from which one population is selected is 

shown as follows:  

{ }( )
{ }( ) { }( )

{ }( ) { }( )

, |

| , ,

| , ,

i j

i j i j

i j i j i ji j

p E

P E p

P E p

µ σ

µ σ µ σ

µ σ µ σ δµ δσ

⋅
=

⋅ ⋅ ⋅∑ ∑
  (5) 

The probability function { }( ),p µ σ  is obtained from 

the prior probability density function from which the 2-
variable { ,µ σ } is selected.  

 
3.3. Expectation of Mean and Variance 
We calculated the expectation of mean from the 

event of the observed data. Using the probability density 
function of the posterior probability ( )|ip Eµ  integral 

for the σ axis, we estimate the expectation. Figure 5 
shows the probability mass of the µ axis of the example. 

( )
{ }( ) { }( )
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|
| , ,

i j i j jj
i
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⋅ ⋅
=
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∑
∑ ∑

 (6) 
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 (7) 

where,  

( ) { }( ) { }( ), | , ,i i j i j jj
P E P E pµ µ σ µ σ δσ= ⋅ ⋅∑  (8) 

if we set the constant iδµ , the equation is as follows.  

[ ] ( )
( )

,
E |

,
i ii

ii

P E
E

P E

µ µ
µ

µ
⋅

= ∑
∑

 (9) 

Using the mean expectation estimated from (9), we 
can describe the variance of mean as follows: 

[ ] [ ]( ) ( )

[ ]( ) ( )
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2

2

V | E | |
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,
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i i ii

i ii

E E p E
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⋅

∑
∑

∑
 (10) 

From (10), a standard uncertainty of mean 
expectation ˆE[ | ]Eµ µ=  follows as 

( )
[ ]( ) ( )

( )

2
E | ,

ˆ
,

i ii

ii

E P E
u

P E

µ µ µ
µ

µ
− ⋅

= ∑
∑

 (11) 

 
4. ALGORITHM 

 
4.1.  Categorization of events 

Fig.5 Probability mass of the µ axis 
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For a space having the variable {µ、σ}, we calculate 
the posterior probability density changing continuously 
in the space and estimate the uncertainty from the 
calculated value. Figure 6 shows an outline of the 
algorithm. 

max

min

max

0.01
 axis

1.5

0.01

 axis 0.0001

3

i

j

δµ
µ

µ

δσ

σ σ
σ

= ∆
 = ∆

= ∆
 = ∆
 = ∆

 

The above initial value is expanded by ∆ in the ∞  
direction from the σ axis and by ∆ in the ∞  and 
−∞ directions from the µ axis. The space is expanded 
until the following criterion of convergence is satisfied. 
 

4.2.  Criterion of convergence 
If the number of expansions is h , the space is expanded 
until the estimated mean uncertainty satisfies the 
following criterion: 

( ) ( ) 5

1
ˆ ˆ 5.0 10

h h
u uµ µ −

+
− ≥ ×  (12) 

Based on the mean uncertainty estimated under the 
criterion, an accuracy up to the third decimal place can 
be expected. 

If the number of measurements n  is small, however, a 
convergence failure is anticipated. In such a case, the 
maximum range of expansion is max 100µ < ∆ . 

 
5. ESTIMATIONS 

 
5.1. Categorization of events 

Based on these assumptions, the event E is classified 
into the following three cases: 

[ Case 1 ] All of the indicated values are identical. 
[ Case 2 ] Two types of adjacent indicated values are 
identical. 

[ Case 3 ] Three types of continuous indicated values 
are identical. 

The uncertainty associated with quantization is discussed 
for each of the above cases. 

For numeric operations, we used general-purpose 
calculation software, MATLAB Ver. 6.1 (Cybernet 
Systems Co., Ltd.). 

 
5.2.  Case 1 
In some cases, no apparent dispersion is observed 

among repeated measurements on account of the 
quantization. The type A evaluation then gives zero 
standard uncertainty. In such a case, the most common 
practice is to assume, as an a priori distribution in type B 
evaluation, a uniform distribution, the width of which is 
given by the quantization interval, and take the width 
divided by square root of 12 as the standard uncertainty 
in [1]. 

Therefore, we estimated the standard uncertainty of 
this case using the B.A. The results are shown in Fig.7. 
Depending on measurement data number n, an 
uncertainty of mean shows the estimation becoming 
small. When the measurement data number is less than 
five according to the estimation, the uncertainty 
estimation may be underestimated when using the 
conventional type B estimation. 

When N=4, convergence criteria; equation. (11), was 
not attained, and the value given in Fig. 7 shows just the 

Fig.7 Standard uncertainty using B.A.; Case 1 
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value at the maximum calculation-space. Figure 8 shows 
the increase of the estimation value depending on the 
algorithm at N=4. 

 
5.3. Case 2 
Similar to Case 1, the difference from these 

estimations of mean is gradually extending. These 
results are shown in Fig. 9. By increasing N, the 
difference of mean is getting large gradually. 

Figure 10 shows the experimental standard deviation 
of mean with respect to the standard uncertainty using 
B.A. for Case 2, from N=4 to 15, 20, 30, 50 and 100. 
The standard uncertainty is estimated to be larger than 
the experimental STD of mean, as in the case for the 
estimation of mean. Particularly, at N=4, the estimation 
was very large. When N=4, the convergence criteria was 
not attained, and the value given in Fig. 10 shows just 
the value at the maximum calculation-space.  

 
5.4. Case 3 
It was not able to find the difference of the mean 

values between these estimation methods, given in Fig. 
11. 

Figure 12 shows the experimental standard deviation 
of the mean with respect to the standard uncertainty 
using B.A. for Case 3, from N=4 to 15, 20, 30 and 50. 
The standard uncertainty of N=4 using B.A. was 
estimated for very large uncertainty. As in the case for 
N=4 in Case 1 and Case 2, the estimation of uncertainty 
was estimated to be very large. When N=4, the 
convergence criteria was not attained, and the value 
given in Fig. 12 shows just the value at the maximum 
calculation-space. 

 
5.5. Discussion 
We assumed the prior probabilities of variable; 

p{µ, σ} are identical. The convergent criteria was not 
attained at N=4 in any cases.  It was due to the 
calculation algorithm did not use the goodness of 
Bayesian approach positively. We consider that the 
algorithm should include some information of the prior 
probabilities as a variable. After this consideration, it is 
possible that the uncertainty is estimated more exactly.  

Though numerous problems remain unresolved at 
N<5, it is considered that the approach is a new method 
to estimate of quantization uncertainty.  

Fig. 10 Experimental standard deviation of mean vs.
standard uncertainty using B.A.; Case 2 
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Fig. 12 Experimental standard deviation of mean vs.
standard uncertainty using B.A.; Case 3 
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6. CONCLUSIONS 

 
We calculated the estimation using the Bayesian 

approach from N=4 to 15, 20, 30, 50. In all cases the 
estimation of standard uncertainty as N=4 was larger 
than the experimental standard deviation of mean or the 
conventional type B evaluation.  

We have shown that when the values of all of the 
measurement data are identical, the conventional type B 
evaluation described above results in underestimation of 
the uncertainty, if the number of data is less than five. 

In estimation of the uncertainty associated with 
quantization, N=4 showed a long-tail posterior 
probability density function, where the mean value is not 
stable. Consequently, the mean uncertainty cannot be 
obtained in a space in which a solution of convergence is 

set. Therefore, we propose to obtain at least five data 
sets, not only when evaluating the uncertainty associated 
with quantization, but for all cases in which 
experimental data showing little dispersion is anticipated. 
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