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Abstract − It is possible to compute uncertainty in the
form of confidence intervals. In this article is exploited the
confidence intervals determination through a simulation
study that enables to evaluate uncertainty in the form of
confidence intervals for real measurements of inter-
laboratory comparison (ILC) even for small numbers of
observations.

Here are listed estimation approaches (mathematical-
statistical algorithms) for the determination of the consensus
value (the true measured value); confidence interval for the
true measured quantity in different laboratories;
determination (estimate) of the inter-laboratory variance;
confidence interval for the inter-laboratory variance; and
within-laboratory variance in experiment of the inter-
laboratory comparison with homoscedastic as well as
heteroscedastic measurements. Different possibilities of
evaluation of ILC when the model applied is a linear model
with one random effect �laboratory� and estimation
procedures are listed and discussed (also describing of the
statistical features) in this contribution.

The merit of the simulation study is for a statistician
(evaluator of ILC) in better approximation of needed
confidence level to obtain the expected result precision in
balanced and unbalanced experiment design for
homoscedastic as well as heteroscedastic measurements
when having small number of observations.

Keywords: Inter-laboratory Comparison, Uncertainty,
Confidence Interval

1. INTRODUCTION

The Inter-laboratory Comparison (ILC) experiment is
either the precision or trueness experiment. The aim of the
ILC evaluation is (in the sense of statistical evaluation):
•  determination of the consensus value and its uncertainty
•  determination of the repeatability measures
•  determination of the reproducibility measures (precision

experiment)
•  determination of the bias of the measurement method or

of the laboratory bias (trueness experiment).
We will use the precision experiment. The precision

experiment is an experiment for examination of laboratories,
when each laboratory is using the same standard
measurement method on identical material (homogenious) is

examined. The aim of the precision experiment is to obtain
the mean value estimate (consensus value), repeatability,
reproducibility and between-laboratory variances (resp. their
standard deviations).

2.  MODEL OF INTER-LABORATORY COMPARISON
(PRECISION EXPERIMENT)

The model of inter-laboratory comparison (ILC) used
here coincides with the model of direct repeated
measurement of one quantity with p representing
participating laboratories. Each laboratory repeats its
measurements on the sample in this way, in the i th

laboratory in  times. The measured values ,,...,,
111211 nyyy

,...,,...,,
222221 nyyy ,...,,...,,

iinii yyy 21 ppnpp yyy ,...,, 21

are considered to be realisations of random variables   11Y ,

12Y  , �,  
1n1Y  ,  21Y ,  22Y , ..., 

22nY , �., 1iY ,  2iY ,�,

iinY , �, 1pY , 2pY , �, 
ppnY  ( pi ,,2,1 K= ). ijY  represents

measurement in individual laboratories.
If we assume in the mixed linear model only one factor

α  (�laboratory�), the model will be following:

eZαiY ++= µ (1)

where Y is the vector of measurements in individual
laboratories; µ  is the true value of measured quantity; i is

the vector of ones (dimension ∑= inN ); α  is the vector

of random or fixed effect �laboratory�; Z is matrix
corresponding to vector α  and e  is matrix of random
errors.

The factor α  can be understood as a random effect
(random effect model) or fixed effect. Fact, that the factor is
assumed to be fixed or random in the model, requires to use
different estimation methods and then one obtains different
estimates (having also different statistical features).

 If we assume α  to be random effect and the
measurements ijY  are supposed to be normally distributed
as:

ijY ~ ( )22
L, eiN σσµ + , (2)
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with mean µ  (the true measured value) and dispersion
22

L eiσσ + , where 2
Lσ  is the inter-laboratory variance

(between-laboratory variance) and 2
eiσ  is the within-

laboratory variance of ith laboratory. These variances are
also called variance components.

In the first step of ILC evaluation the requirement of
normal probability distribution of measurements eq.(2) is
tested, using Shapiro-Wilk�s, d´Agostin�s or Pearson�s 2χ -
goodness of fit tests. If the requirement of normal
probability distribution of measurements in laboratories is
not met, non-parametric versions of evaluation (robust) must
be used or the procedure for outlier determination and their
elimination from the overall evaluation is used [1].

2.1 Homoscedastic and heteroscedastic data
The second requirement is the homoscedasticity of

measurements (achievement of comparable repeatability of
measurements in the individual laboratories):

22
2

2
1 epee σσσ =⋅⋅⋅== ,       (3)

where 2
eiσ  is the within-laboratory variance of ith laboratory

and can be tested using Cochran�s, Bartlett�s or Hartley�s
tests. In a case of measurements do not meet this condition,
they are heteroscedastic [2].

2.2 Evaluation of the ILC
The aim of the ILC evaluation is to determine the

consensus value µ�  and variance components 2
L

2  , σeiσ  (and
their confidence intervals). The consensus value is obtained
in unbalanced experiment (balanced as well) with
homoscedastic measurements using the generalised least
squares method as:
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 and ( )Yvar  is the covariance matrix

of observations. In a case that the variance components are
not known, one of the following methods must be used to
estimate them: MINQUE, Henderson�s method, maximum
likelihood, restricted maximum likelihood or GLSE [3-6].
Following the similarity we can say, that most of these
estimates of the consensus value differ in the weight that�s
in variance components [7].

If 02
L =σ , the random effect �laboratory� does not

have any influence on results. This statement is tested using
a statistical test [8], and this can be done also using a
confidence interval. In this contribution is preferred the
procedure of testing using the confidence intervals as it is
more concise and efficient, because the uncertainty as a
measure is also defined in the sense of a confidence interval.

The estimation of the confidence interval for the inter-
laboratory variance was proposed by several authors:
Tukey-Williams, Thomas-Hultquist, Burdick-Eickman,
Hartung-Knapp, Wald which gave confidence intervals
suitable only for homoscedastic measurements [9,10].

2.2 The Confidence Interval for the Between-
laboratory Variance after Burdick and Eickman

This confidence interval for the between-laboratory
variance is derived on the principle of the confidence
interval after Tukey and Williams and is [9,10]:
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~  is the harmonic mean of

repeatings and minn  is the minimum number of repeating,

maxn  is the maximum number of repeatings,

( ) ( )1,1 2
21

2
2 −− − pp αα χχ are the critical values of the chi-

square distribution and the critical values of the Fisher
distribution are ( ) ( )pNpFpNpF −−−−− ;1,;1 221 αα .

3.  SIMULATION ANALYSIS

A simulation analysis was done regarding the estimate
differences for heteroscedastic measurements using the
following methods: maximum likelihood, Mandel-Paule and
modified Mandel-Paule�s method to estimate the consensus
value and variance components [2-6].

3.1 Simulation Experiment Configuration
The set-up of experiments was combined as:
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•  the number of laboratories is one of three values: 5
(few), 10 (middle), 20 (a lots of laboratories);
•  measured quantity ( µ ): 10 (small) or 100 (great);
•  the number of replicates of measurement in individual
laboratory is either 5 or 15 in balanced model, or in
unbalanced model (2,4,6,8,10 or 2,4,6,8,10,12,14,16,18,20
resp. 2,2,3,4,5,6,7,8,9,10,11, 12,13,14,15,16,17,18,19,20),
marked as �unbalan�;
•  within-laboratory variance ( 2

eiσ ): constant 0,1 or 1 (for
the mean value 10) and 1 or 10  (for the mean value 100), or
in increasing order (1, 4, 7, 10, 15 or 1, 2, 3, 5, 7, 9, 11, 14,

17, 20 resp. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20), marked �differ�;

•  between-laboratory variance ( 2
Lσ ): 0,1-times within-

laboratory variance (eventually its average value) or 10-
times  within-laboratory variance. If the within-laboratory
variance in individual laboratories is different (marked as
�differ�) it is needed to calculate with the average value
from all within-laboratory variances, that is 2

eiσ .

Table I Simulation analysis in experiment with µ =100; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x 5   100,2026 (0,3908)   100,1593 (0,3718)    100,1738 (0,3715)

 5 x 15   100,1710 (0,2034)   100,1508 (0,2015)    100,1632 (0,2001)
10 x 5   100,1196 (0,2446)   100,0880 (0,2330)    100,0931 (0,2339)

10 x 15   100,0698 (0,1284)   100,0644 (0,1275)    100,0666 (0,1272)
20 x 5   100,0694 (0,1546)   100,0559 (0,1503)    100,0578 (0,1510)

20 x 15   100,0450 (0,0833)   100,0427 (0,0831)    100,0436 (0,0830)

Table II Simulation analysis in experiment with µ =10; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x 5    10,0636 (0,0364)    10,0498 (0,0356)    10,0542 (0,0353)

 5 x 15    10,0548 (0,0219)    10,0484 (0,0213)    10,0524 (0,0213)
10 x 5    10,0389 (0,0247)    10,0296 (0,0233)    10,0312 (0,0234)

10 x 15    10,0301 (0,0136)    10,0275 (0,0134)    10,0286 (0,0134)
20 x 5    10,0179 (0,0152)    10,0142 (0,0151)    10,0148 (0,0152)

20 x 15    10,0138 (0,0083)    10,0130 (0,0083)    10,0133 (0,0083)

Table III Simulation analysis in experiment with µ =100; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =10· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x 5   101,1317 (13,8)   101,1258 (13,8)    101,1312 (13,8)

 5 x 15   101,0028 (13,2)   101,0008 (13,2)    101,0027 (13,2)
10 x 5   100,5125 (8,5)   100,5100 (8,5)    100,5113 (8,5)

10 x 15   100,5293 (8,4)   100,5288 (8,4)    100,5292 (8,4)
20 x 5   100,2394 (5,3)   100,2389 (5,3)    100,2392 (5,3)

20 x 15   100,2852 (5,1)   100,2851 (5,1)    100,2851 (5,1)

Table VI Simulation analysis in experiment with µ =100; 2
eiσ =10; 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x unbalan   100,0579 (0,7078)   100,0722 (0,6519)   100,0715 (0,6719)

10 x unbalan   100,0135 (0,2536)   100,0250 (0,2523)   100,0246 (0,2551)
20 x unbalan   100,0101 (0,1185)   100,0170 (0,1230)   100,0170 (0,1236)
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Table V Simulation analysis in experiment with µ =100; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x unbalan   100,1489 (0,4253)   100,1366 (0,3655)   100,1450 (0,3778)

10 x unbalan   100,0631 (0,1764)   100,0647 (0,1647)   100,0666 (0,1666)
20 x unbalan   100,0372 (0,1122)   100,0369 (0,1077)   100,0376 (0,1085)

Table VI Simulation analysis in experiment with µ =100; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =10· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x unbalan   100,9714 (13,7)   100,9728 (13,6)   100,9754 (13,6)

10 x unbalan   100,3317 (8,8)   100,3316 (8,8)   100,3317 (8,8)
20 x unbalan   100,2305 (5,0)   100,2303 (5,0)   100,2303 (5,0)

Table VII Simulation analysis in experiment with µ =10; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x unbalan    10,0421 (41,4)    10,0390 (35,6)    10,0414 (36,7)

10 x unbalan    10,0147 (17,1)    10,0147 (15,9)    10,0153 (16,1)
20 x unbalan    10,0106 (10,6)    10,0104 (10,3)    10,0106 (10,4)

Table VIII Simulation analysis in experiment with µ =10; 2
eiσ =[2 4 6 8 �] (differ); 2

Lσ =10· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats Consensus value µ�  (empirical variance for µ�  in 10 000 simulations)
5 x unbalan    10,3811 (1,3864)    10,3819 (1,3856)    10,3827 (1,3851)

10 x unbalan    10,1540 (0,8505)    10,1540 (0,8503)    10,1541 (0,8503)
20 x unbalan    10,0817 (0,4964)    10,0819 (0,4964)    10,0819 (0,4964)

Table IX Simulation analysis in experiment with µ =10; 2
eiσ =1; 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats α needed for covering the µ  confidence interval in 9500 incident
5 x 5 0,0001 0,00005 0,00005

5 x 15 0,001 0,001 0,001
10 x 5 0,0005 0,005 0,005

10 x 15 0,01 0,01 0,01
20 x 5 0,02 0,02 0,02

20 x 15 0,02 0,03 0,03

Table X Simulation analysis in experiment with µ =100; 2
eiσ =10; 2

Lσ =0,1· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats α needed for covering the µ  confidence interval in 9500 incident
5 x unbalan 0.00005 0.00005 0.00005

10 x unbalan 0.001 0.001 0.001
20 x unbalan 0.01 0.01 0.01
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Table XI Simulation analysis in experiment with µ =100; 2
eiσ =10; 2

Lσ =10· 2
eiσ .

Experiment Maximum Likelihood
estimate

Estimate after Mandel and
Paule

Modified estimate after
Mandel and Paule

Lab.x repeats α needed for covering the µ  confidence interval in 9500 incident
5 x unbalan 0.00005 0.00005 0.00005

10 x unbalan 0.01 0.01 0.01
20 x unbalan 0.02 0.02 0.02

3.1 Confidence Interval for the Consensus Value
In the tables I to VIII are determined the point estimators

of the true measured value obtained as average values from
10 000 simulations of the consensus value and its variance
using three different estimators, that are maximum
likelihood estimator, after Mandel and Paule, modified after
Mandel and Paule are listed for different experiments and
different numbers of laboratories and repeatings.

In tables IX to XI are considered the interval estimators.
Results of the simulation analysis are evaluated and listed in
tables in such a way that it is obvious which confidence
level is necessary to obtain 95 % covering of the theoretical
mean value by the confidence interval for different numbers
of laboratories and repeating (balanced and unlabanced
experiment).

4.  RESULTS OF THE SIMULATION ANALYSIS

The simulation analysis shows that the differences in
estimates of consensus value and the length of the
confidence interval for the true value for three methods of
estimation (maximum likelihood, Mandel-Paule and
modified Mandel-Paule�s method) are minimal, independent
of the structure of the experiment (balanced and unbalanced)
and for different types of measurements (homoscedastic or
heteroscedastic).

The simulation analysis offers proof that the consensus
value (its variance) is independent of the true value (see and
compare tables I and II) and only minimally influenced by
the inter-laboratory variance (compare tables I II), but
considerably affected by the within-laboratory variance as
well as whether measurements are homoscedastic or not.

The tables IX-XI obtained in the simulation analysis
makes it possible to determine the α value in a way that the
confidence interval for the true value reaches the confidence
level of 95% in both an unbalanced experiment with
heteroscedastic measurement. It makes it possible to
determine if the laboratories are significantly "biased" by
each other, which is one of very important problems in
evaluation of ILC.

For the evaluation of confidence intervals of inter-
laboratory variance the simulation analysis proves that the
Burdick-Eickman interval is suitable even for
heteroscedastic measurements (balanced and unbalanced
experiment). It is possible to determine α  in such a way
that the obtained confidence interval covers at confidence
level 95 % the true value of the inter-laboratory variance.
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