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Abstract − The evaluation of measurement uncertainty, 
from the final user’s standpoint, involves several issues 
which are only partially addressed by the GUM [1]. An 
evaluation procedure assisted by a computer program can be 
of great support and provide the user with detailed results 
useful for further analysis. In this paper a code is presented 
for the assisted evaluation of measurement uncertainty, 
based upon the convolution of probability distributions. So 
the method  allows expression of the final result of 
measurement as a probability distribution, on which it is 
possible to evaluate useful parameters such as expanded 
uncertainty, at whatever confidence level. It also permits to 
evaluate, in probabilistic terms, the risk associated to 
matching tolerances. Moreover it is possible to manage the 
uncertainty on dispersion parameters (sometimes called 
‘uncertainty of uncertainty’) considering a modified 
probability distribution. 

In the paper the code is presented together with some 
case studies showing the support available to the operator, 
the GUM compatibility and the application importance of 
the final probability distribution. 
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1. INTRODUCTION 

Research studies on computer aided evaluation of 
measurement uncertainty and related software codes have 
been and are currently carried out. Main topics regard the 
implementation of the GUM procedure, simulation for 
general purpose or specific complex measuring problems [2-
7]. The aim of the software presented in this paper is 
twofold: to support the user creating a simple model for the 
measurement procedure; to evaluate the measurement 
uncertainty on the same hypothesis of the GUM but giving 
as a result a probability distribution together with values 
from a strict GUM procedure. The former provide the user 
with an in depth information regarding the behaviour of his 
measurement procedure: it is possible to use the final 
probability distribution to evaluate an expanded uncertainty 
at whatever coverage level is requested, eventually 
comparing the results with the classical GUM expanded 
values. Moreover given an expanded uncertainty at certain 
coverage level it is possible to use the probability 

distribution to evaluate the acceptance risk when comparing 
the measuring result with a tolerance level [8-9]. 

2. THEORETICAL BACKGROUND 

The expression of the result of a measurement by a 
probability distribution over the set of the possible values of 
the measurand may be founded over the following 
considerations. 

Let us consider the measurement task consisting in the 
measurement of a quantity x, with values in X, under the 
assumption it has a constant value for an interval of time T 
of interest. The measurement process will include an 
observation sub-process, giving rise to a vector of 
observations [ ]1 Ny ,...y=y , produced by a measuring 
system, under a selected measurement strategy. 

The probabilistic relation holding between such 
observations and the unknown (unobservable) value of the 
measurand, x, may be expressed, in the most general way, as 
[9]: 

 ( ) ( )p x p x;y yθ θ  (1) 

where ∈Θθ  is a vector of parameters representing 
influence quantities. 

Then measurement restitution may be performed 
according to [9]: 

 ( ) ( ) ( )p x p y x p d     x
Θ

X∝ ∈∫y θ θ θ ;  (2) 

Formula (2) provides the required foundation for 
expressing the measurement result as a probability 
distribution over the set X of the possible values of the 
measurand. If we now define: 

 (xx̂ E x )y  (3) 

it is possible to obtain from formula (3) the following 
conditional distribution: 

 ( )ˆ ˆp x x     x, x X∈;  (4) 
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Incidentally, from a theoretical standpoint, it should be 
noted that distribution (4), we will be using in the following, 
actually logically derives from formula (2), which in turn 
includes the model of the observation process expressed by 
(1). This metrological background, in our opinion, should 
not be forgotten, in developing good evaluation procedures. 

Let us now consider the following additional hypotheses, 
conformal the GUM (estimation) model: 

1. it possible to express the effect of all influence 
quantities on the final measurement result as a linear 

function of the variations in the quantities: , 

with known coefficients ; 

n

i i
i 1

x c
=

δ = δ∑ v

ic
2. for each of the input quantities, the following 

information is available: 
a) either an estimated standard deviation σ , with iˆ iν  

degrees of freedom, which may be finite or infinite; 
b) or an estimate of the range of variability, say 

[ ]0i i 0i iv v , v v− ∆ + ∆ , with limit either certain or subject to a 
relative uncertainty, say i iv vα = ∆∆ ∆ i ; 

3. it is possible to identify a subset of mutually 
uncorrelated input quantities, say, without loss of generality, 

[ ]1 2 mv ' v , v ,..., v= , , for which the corresponding 

correlation matrix is known 

0 m n≤ ≤

ijR r =   . 
Under the assumed hypotheses, we have: 

 ( ) ( )ˆ ˆp x x p x x∆= −v  (5) 

where ( )p x∆v  may be expressed as the composition, 
through a convolution rule, of the distribution accounting for 
the global influence of the subset of uncorrelated input 
quantities (if not null), ( ),p x∆v uncorr , with the distribution 
accounting for the effect of complementary subset of 
mutually correlated input quantities (if not null), ( ),p x∆v corr .  

So we have: 
( ) ( ) ( ) ( ) ( ), , , ,p x p x p x p x p d∆ ∆ ∆ ∆ ∆= ∗ = − ξ∫v vv vuncorr corr uncorr corr ξ ξv

 (6) 
The numerical calculation of such distribution will be 

detailed in the next paragraphs. 

3. THE ASSISTED EVALUATION PROCEDURE 

The user who needs to evaluate a measurement 
uncertainty has to face some difficulties form the clear 
identification of the devices used in the measuring chain to 
the collection of data and finally computational problems to 
evaluate the final uncertainty. 

The proposed code is based on a schematisation of the 
measuring chain as a sequence of standard blocks each 
representing a component of the measuring chain. Each 
block is characterized by a set of properties that describes 
the overall behaviour of the component as an element of the 
measuring chain and moreover as a contributor to the 
measuring uncertainty. In this phase of development the 
block represents a linear transfer function with uncertainty 
on the sensitivity and on the offset: a proper combination of 

blocks can provide a model even for a complex measuring 
procedure. 

Each influence quantity contributing to the overall 
uncertainty is characterized by its proper dispersion 
parameter, by the kind of underlying probability 
distribution, by the number of degrees of freedom or other 
quantifier of the uncertainty on dispersion parameters. For 
mutually correlated quantise, the correlation coefficient 
must also be specified. Such information are also conformal 
to the requirements of the GUM. All the information 
referring to each block in the measuring chain is treated as 
defining an object, in the object oriented environment in 
which the code is developed. 

The evaluation of the standard and expanded uncertainty 
proceeds according to two independent methods: the GUM 
recommended evaluation principles, and the convolution of 
the probability densities of each contributor. 

3.1. Available options 
The Assisted procedure can manage several different 

cases, schematically it is possible to distinguish: 
i- type A or type B uncertainty values; 
ii- correlated and uncorrelated quantities and mixed 

combinations of them; 
iii- presence of uncertainty on the dispersion parameters 

of the quantity. 
 
i - Type A evaluations are treated with the proper 

degrees of freedom using t-Student distributions; 
type B evaluations are treated with probability densities 

such as uniform, triangular and other, with a proper 
dispersion parameter. 

ii – Correlated quantities are first of all combined as 
specified by the GUM and then they are associated to a 
normal distribution that is considered as another 
uncorrelated quantity. If they present an uncertainty on the 
dispersion parameter, their probability densities are 
previously computed according to (iii), then their new 
dispersion figures are computed and combined as here 
described. 

iii – The uncertainty on the dispersion parameter is 
managed by associating to the quantity a proper probability 
distribution. The new probability distribution depends on the 
original shape: in case of normal PD a t Student is used. 
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Fig. 1. Schematic flowchart for the codes implementing the GUM 

and the PD methods 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC8 



In case of uniform PD with uncertainty on the 
distribution limits, then a new PD is assigned that is the 
mean among all the possible probability densities 
considering the uncertainty on the distribution parameter. 

Uncorrelated probability densities are then convolved 
together giving the final probability distribution for the 
considered measurement process. It is then possible to 
evaluate directly both the standard and the expanded 
uncertainty, U, given the desired coverage level, p0. Note 
that having the probability distribution, there is no need for 
the application of the Welch-Satterwaite formula [10-11]. 
The codes provides also standard and expanded 
uncertainties computed strictly according to the GUM. As 
described in the next section, at the present development 
stage the assisted procedure consists of two separate 
software codes for the implementation of the GUM and the 
PD methods, their flowcharts being presented in figure 1. 

3.2. The software development 
Particular care was dedicated to the software 

development procedure, integrating this activity in the 
quality management policy of the laboratory. 

The development followed two separate lines, one 
dedicated to GUM methods, the other to probability 
distributions methods. Successive versions of the software 
proceeded in a parallel way integrating at each step a limited 
set of new capabilities. In such a way at each step a 
complete software validation was possible together with a 
direct comparison of the results obtained with the two 
methods at the same development stage. The sequence of 
development for both methods is presented in table 1 and at 
the last stage covers all the available options described 
before. 

TABLE I. Development steps and their functionalities 

Stage Functionalities 

0 Only uncorrelated quantities, infinite degrees of 
freedom (DoF), no uncertainty on the parameter. 

1 Only uncorrelated quantities, infinite or limited 
DoF, uncertainty on the parameter. 

2 
Correlated or uncorrelated quantities, infinite or 
limited DoF, uncertainty on the parameter also for 
correlated quantities. 

 
At each step of development a detailed documentation 

was produced including main functionalities, software 
strategies, user manual and discussion on validation policies 
and results. The code and the corresponding documentation 
are then inserted in the laboratory archive and managed 
according to the quality procedures of the lab. 

The software is written in the Matlab® environment 
according to an object oriented approach that is particularly 
suited to our model of measurement chain and to the 
assisted procedure [12]. The memorisation of the influence 
quantities in an object form proved to be really effective in 
order to have all the characteristics of a quantity, or a block 
in the model, available at the same time. Each version of the 
software consists of a set of separate codes or functions, 
each one dedicated to a specific aim. In such a way it is 
possible to re-use functions whenever necessary in new 

software versions. Moreover a separate validation of each 
function is often much more feasible and efficient than a 
complete validation of the overall software package. 

The assisted procedure is intended to have an active 
place in the measurement procedure, in order to give a 
figure of the reliability of the measurement result. So the 
assisted procedure has to be treated with metrological 
criteria and validation according to reference cases is 
necessary. The validation policy was selected according to 
the different functionalities. In particular for the overall code 
a set of examples was selected from GUM appendix as 
reference cases. Moreover, in order to test completely all the 
available options, a set of more complex and less common 
cases was defined. Validation was considered positive when 
besides the fundamental functionalities of the code such as 
data input and output, the results were consistent with the 
expected results obtained by manual computation according 
to the GUM, to the PD method or obtained directly from the 
GUM appendix [13]. 

In order to have an easier validation the code was 
developed in different phases according to its possible 
functionalities. In the first phase, only discrete probability 
densities have been considered to avoid the usual problems 
in going from a continuous domain to a discrete one. Then a 
discretisation procedure was set up and validated, extending 
the software capabilities to the continuous case. 

Quantisation was deeply investigated, as it is a key-point 
regarding the accuracy of the computation. This is moreover 
important when small differences due for example to the 
effect of the uncertainty of the dispersion parameter have to 
be evaluated. 

The policy of discretisation considers the use of an odd 
number of points over the full interval. The number is 
determined on half range and then extended to the full range 
adding the central point. 

When changing from a continuous to a discrete 
probability distribution there may be two main effects due to 
the discretisation policy: - the position of the point on the 
edges can produce a discrete distribution slightly larger or 
smaller than the original distribution; - the truncation of an 
infinite probability distribution in particular a normal, to a 
given coverage level. A study was carried out to investigate 
the optimal discretisation for normal and uniform 
distribution in order to have an acceptable computational 
accuracy together with an acceptable computation time. A 
further study will regard the Student and the uniform with 
uncertainty on the limits distributions. 

Some care was dedicated to the design and realisation of 
the user interface, which assists the user in the organization 
of the input data necessary for the computation [14].  

At the end of the data input phase a check procedure is 
provided in which data are verified both by the user and 
partially by the supporting software. 

4. TEST CASES 

Test cases are presented in order to show the possibilities 
offered by the considered method and the differences with 
the GUM procedure. The effect of the uncertainty on the 
dispersion parameter is shown together with the effective 
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calculation of expanded uncertainties. Test cases include a 
GUM example in order to have direct comparison of the 
results and direct validation of the figures evaluated 
according to standard methods; a complex case to show all 
the available features and a discrete case to show how it is 
possible to manage discrete measurement systems. 

4.1. An  example from the GUM 
This first test case is the example H1 of the GUM and 

regards the measurement of standard reference blocks. 
Uncertainty evaluation is carried out after linearization 

the measurement model according to the GUM procedure, 
and table 2 presents the input data. 

TABLE II. Input data for test case 4.1 

Quantity PD Dispersion 
parameter 

DoF/Uncertainty 
on parameter 

1 Normal 25 18 
2 Normal 9.7 26 

3 Uniform 2.9 10% range 
or 50 DoF. 

4 Uniform 16.6 50% range 
or 2 DoF 

 
Figure 2 presents the PDs of this example. Note that: 

 - a t-Student PD is used for the first two quantities; - the 
uniform distributions are modified according to the 
uncertainty on the dispersion parameter. 

x 10
-3

-100 -50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2
FINAL PROBABILITY DISTRIBUTION

0

1

2

3

4

5

6
x 10

-3

P
R

O
BA

B
IL

IT
Y

Quantity 1
Quantity 2
Quantity 3  
reduced by 2
Quantity 4

P
R

O
B

A
BI

LI
TY

P
R

O
B

A
BI

LI
TY

nm  
Fig. 2.  Test case 1: probability distributions of the input quantities 

and convolved final distribution on a separate scale. 

Table 3 presents a comparison of the results, in which it 
is possible to appreciate that the evaluation of the expanded 

uncertainty based on the final PD is slightly different from 
the figures based upon the GUM method, which are based 
on the Welch-Satterwaite approximation. 

TABLE III. Test case 3.1, comparison of GUM and PD 
results  

 GUM PD 
Standard uncertainty, u [nm]. 32 32 
Expanded uncertainty, 95%, U95 [nm]. 68 64 
Expanded uncertainty, 99%, U99 [nm]. 93 82 

 

4.2. Overall capabilities test case 
In this test case all the available options from the 

procedure are considered.  

TABLE IV.  Input data for test case 4.2 

 PD Dispersion 
parameter 

DoF/Uncertainty 
on parameter 

Correlation 
coefficient 

1 Uniform 1.4 20% range 
or 25 DoF. 

2 Normal 1.1 5 
-0,5 

3 Uniform 1.7 10% range 
or 50 DoF - 

4 Normal 0.6 6 - 
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Fig. 3. Test case 2:probability distributions of the input quantities 

and convolved final distribution on a separate scale.  

In this case the normal probability distribution for the 
correlated quantities has a dispersion parameter computed 
according to the GUM, but considering the actual 
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dispersions of the input distributions, modified to take into 
account the uncertainty on their distribution parameters. 

 There are either correlated and uncorrelated quantities 
which present limited DOF or uncertainty on the dispersion 
parameter. Input data are presented in table 4. Input and 
final distributions are presented in figure 3. 

TABLE V. Test case 3.2, PD results (arbitrary units) 

 PD 
Standard uncertainty, u 2.2 
Expanded uncertainty, 95%, U95 4.2 
Expanded uncertainty, 99%, U99 5.4 

 
Final figures are presented in table 5. Since the PD 

method evaluates the correlated quantities distribution not 
according to the GUM a comparison of the final figures is 
unfeasible. 

4.3. Discrete test case 
In this last example a discrete case is considered in order 

to show that approximating a discrete PD by a continuous 
one can lead to misleading results. 
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Fig. 4. Test case 3: probability distributions of the input quantities 

and convolved final distribution on a separate scale. 

This is the case in which measurement results are 
affected for example by a large quantisation effect, in such a 
way that the repeated measurement distribution appears as 
discrete and not continuous.  

Figure 4 presents the input and output discrete PDs, 
together with the final one. Table 7 presents a comparison of 
the final results. 

TABLE VI. Input data for example 3.3 

 PD Dispersion 
parameter 

DOF/Uncertainty 
on parameter 

1 Uniform 3 - 
2 Discrete Normal 

(discrete t-Student) 0.5 10 
 

Note that since the final PD is obtained as a result of a 
convolution process between two discrete distributions, its 
shape is discrete itself. In this case the use of a continuous 
PD such as a t-Student for the evaluation of the expanded 
uncertainty is not a proper choice and the evaluation based 
upon the final PD is the only possible way of proceeding. 

TABLE VII. Test case 3.3, comparison of continuous 
approximation and PD results.  

 GUM PD 
Standard uncertainty, u 1.8 2.1 
Expanded uncertainty, 95%, U95 3.5 3 
Expanded uncertainty, 99%, U99 4.7 4 

 
In table 7 some figures are presented to compare the 

continuous approximation and calculation of discrete 
distribution. Note that while the expanded uncertainty 
evaluated by the GUM method gives figures that do not 
consider the discrete resolution of the instrument, the 
proposed method gives a result compatible with the 
instrument’s resolution, since it evaluates the expanded 
uncertainty directly on the final discrete probability 
distribution. 

5. CONCLUSIONS 

A software for the evaluation of measurement 
uncertainty using probability distributions was presented, 
together with a set of test cases to present its functionality. 
The use of the proposed method and assisted procedure 
gives effective results to the user and additional information 
regarding the final probability distribution. It is also possible 
apply the standard GUM method. Computational efficiency 
is ensured by a careful discretisation together with 
nowadays powerful PC. Data input is guided by a proper 
and friendly user interface. 
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