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Abstract – The modelling of the measurement is a key 
element of the evaluation of measurement uncertainty in 
accordance with the basic concept of the Guide to the Ex-
pression of Uncertainty in Measurement (GUM). The model 
equation expresses the relationship between the measurand 
and all relevant input quantities contributing to the meas-
urement result. It serves as a basis for propagation of the 
probability density distributions for the input quantities or, 
in case of (almost) linear systems, for Gaussian propagation 
of the related standard uncertainty contributions. 
 A practical and highly versatile modelling concept has 
been developed. It is based on both the idea of the classical 
measuring chain and the measurement method used. There-
fore, this concept gets on with only a few generic structures. 
 The concept has led to a modelling procedure which is 
structured into five elementary steps. Only three types of 
modelling components are employed. It holds for most kinds 
of measurements performed in the steady state.  
 
 Keywords: probability, uncertainty, modelling. 
 

1.  INTRODUCTION 
 
 In accordance with the GUM [1], it is the aim of the 
modelling procedure to mathematically establish the rela-
tionship between the measurand Y and all relevant (ran-
dom) input quantities X1,…, XN which may contribute to 
the uncertainty associated with the measurement result: 
 
 

i

1 2( , ,..., )NX X X=Y f                              (1.1) 
 
This relationship serves as a basis for propagation of the 
probability density distributions for the input quantities or, 
in case of linear or quasi-linear systems, for Gaussian 
propagation of the standard uncertainty contributions at-
tributed to the input quantities. Furthermore, the model 
equation opens up an easy way to implement computer-
aided uncertainty budgeting. 
 But neither the GUM nor other relevant uncertainty 
documents provide a systematic and generally applicable 
modelling procedure. Therefore, to practitioners, modelling 

appears to be the most difficult problem in uncertainty 
evaluation. 
 First approaches to a consistent modelling procedure 
have been made by Bachmair [2], Kessel [3], Kind [4] and by 
a joint working group of the Physikalisch-Technische Bunde-
sanstalt (PTB) and the German Standardization Organization 
DIN [5]. 
 As the above approaches, the modelling procedure pre-
sented is based on both the idea of the measuring chain and 
the measurement method used. It is the aim of this work to 
present a straightforward and highly versatile operational 
procedure for the modelling of measurements in the steady 
state that is applicable to most areas of uncertainty evalua-
tions performed. 
 

2.  GUM CONCEPT 
 
 2.1 Basic relationships 
 The GUM concept for evaluating the uncertainty is 
based on the knowledge about the measuring process and the 
quantities which may contribute to the measurement result 
and its associated uncertainty. Therefore, the starting point of 
uncertainty evaluation is to take up and gain this knowledge. 
 In accordance with the GUM concept (see GUM, clause 
3.3.4)  , the (always being incomplete) knowledge about each 
contributing (random) input quantity Xi  is to be expressed by 
means of probability density functions (pdf) ϕXi(ξi). The 
expectation value of the pdf is the best estimate of the value 
of the quantity (see equation (2.1)) and its standard deviation 
is the uncertainty uxi associated with this estimate (see equa-
tion (2.2)): 

( )i i Xi i ix E X dϕ ξ ξ ξ
+∞

−∞

 = =  ∫                           (2.1) 

where ξi are the possible values of the quantity Xi. 
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                                                                                  (2.2) 
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But how to obtain an appropriate pdf that reasonably reflects 
the existing (incomplete) knowledge about a quantity? It can 
be obtained by utilizing the principle of maximum informa-
tion entropy (pme) [6], that, for example, yields 
• 

• 

a rectangular pdf if one knows that the values ξi of the 
 quantity Xi are contained in an interval (practical exam-
 ples: given tolerances or error limits, digital resolution),  

a Gaussian (normal) pdf if one knows the best estimate 
 xi = E[Xj] and the associated standard uncertainty uxj of 
 the quantity Xj (practical examples: statement of a cali-
 bration result, result of a statistical analysis expressed by 
 a mean and a standard deviation). 
 
      If new information is available, the change of a given 
pdf is described by Bayes´ theorem [7][8]: The posterior pdf 
ϕX(ξID,I) taking account of new data D results from the 
prior pdf ϕX(ξII) taking account of prior information I as 
product of a constant C, the Likelihood l(ξID,I) and the 
prior pdf: 
 

( , ) ( )X D I d Cl I dϕ ξ ξ ξ= ξ

N

N

                            (2.3)          

Fig. 1: Illustration of the concept of pdf propagation in un-
certainty evaluation. symbols: Y-measurand; X1, X2, X3 - 
input quantities contributing to the result of the measure-
ment; y = E[Y]; uy - standard uncertainty associated with y 

 
C follows from the normalization of the posterior pdf. 
 
The pdf for the measurand Y, ϕY(η) is given by the integral 

1,..., 1,( ) ... ( ... )...Y X XNϕ η ϕ ξ ξ
∞ ∞

−∞ −∞

= ∫ ∫

1, 1... ( ( ... ))Y N ...f d dδ η ξ ξ− ξ ξ                   (2.4) 
 
where fY is the functional relationship of the values of the 
involved quantities and the value of the measurand. From 
the above pdf ϕY(η), the expectation value of the measurand 
y = E[Y] and its associated uncertainty uy can be derived: 

 
The way of uncertainty determination by means of pdf 
propagation is illustrated in Fig. 1.  
 But because equation (2.4) can be analytically com-
puted only in fairly simple cases, modern uncertainty 
evaluation uses the Monte-Carlo Method as an integration 
technique [8]. 
 
 2.2 Monte-Carlo Method 
 The Monte-Carlo Method is an integration technique 
which inter alia is utilized for propagation of pdfs [9] (Fig. 
1).  
 It is based on the sampling of the cumulative input 
pdfs: With uniform probability, probability values ΦXi(ξi) of 
the involved input quantities are to be selceted. Then, the 
related arguments ξi of each quantity are to be combined in 
accordance with the model equation Y=f(X1, ...,XN) yield-

ing values ηi. From a sufficient number of samples, a fre-
quency distribution is obtained that approximates the prob-
ability distribution ϕY(η) which may be attributed to the 
measurand Y. Fig. 2 illustrates these techniques. 
       This Monte Carlo integration technique (see Fig. 2) 
converges always if the variance of pdf for the output quan-
tity is finite. However, this is always the case in meaning-
fully designed measurements. The technique handles linear 
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and non-linear models alike whereas the expansion of the 
law of uncertainty propagation (equation 2.8) to higher or-
ders (see GUM [1], note to clause 5.1.2) may require sub-
stantial additional effort. To practitioners, however, the 
Monte-Carlo Method still appears to be “very mathematical” 
but not tangible enough. 
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(a)  Sample values from the pdfs: (1) ΦX i (ξi) = ρ  (2) ξi= Φ -1
X i (ξi).

(c)    Compute frequency distribution.                 (d) ϕY  →  ϕY  for M → ∞.
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(b)  Combination according to the model:   η = f (ξ1,ξ2,ξ3)    →   η1,...,ηM.

ρ1ρ1

ρ3ρ3

ξ1,1ξ1,1 ξ3,1ξ3,1

2.5)

 

( ) d (Yy η η ηϕ
∞

−∞

= ∫

( )( )
1

22 d (2.6)Y Yu yη η ηϕ
∞

−∞

 = − 
 

∫

Fig. 2: Visualisation of Monte-Carlo integration. (a) The 
upper three graphs show (solid lines) the pdfs to the (input) 
quantities and (dashed lines) the respective cumulative dis-
tributions. The arrows illustrate the sampling from cumula-
tive distributions. (b) Combination of the arguments. (c) The 
curves in the bottom part show computed frequency distri-
butions for two sample sizes M. (d) Approximation of the 
pdf to the measurand ϕY. 
 
 2.3 Standard GUM Method 
 During the last decade, the Standard GUM Method [1] 
has become a worldwide-recognized standard for the evalua-
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tion of measurement uncertainty. In difference to the Monte-
Carlo Method, the Standard GUM Method is based on the 
Gaussian uncertainty propagation. 
 The model equation (see equation (1)) together with 
the estimated values xi serve as a basis for the determination 
of the expectation value of the measurand: 
 
y = f (x1, x2, ... ,xN)        (2.7) 
 
 The uncertainty propagation is based on the rules of 
Gaussian error propagation and first-order Taylor series 
expansion assuming that, at least in narrow ranges around 
the expectation values (operating points), the partial re-
sponses of the output quantity to changes of the respective 
input quantities may be described sufficiently by their first 
partial derivatives / i if x x∂ ∂  (see also 3.1): 
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               (2.8) 

 
 where uxixj = uxi ⋅ uxj ⋅r(xi; xj) is the estimated covari-
ance of the quantities Xi and Xj, r(xi,xj) being the correlation 
coefficient. 
 Due to the use of first-order Taylor series expansions, 
the application of the Standard GUM Method is limited to 
linear or quasi-linear systems. Fig. 3 illustrates the concept 
of Gaussian uncertainty propagation in uncertainty evalua-
tion. 
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Fig. 3: Illustration of the concept of Gaussian uncertainty 
propagation 
 

3 MODELLING PROCEDURE 
 
 3.1 Concept 
 The modelling of the measurement is a key element of 
uncertainty evaluation in accordance with the GUM (see 2.2 
and 2.3). 
 The modelling concept presented [10] is intended for 
the modelling of measurements that are performed in the 
steady state. The concept is based on both the idea of the 
classical measuring chain [4] [5] and the method of meas-
urement [4] used. 
 The measuring chain constitutes the path of the meas-
urement signal from cause to effect. The measuring system 
or the measuring process is regarded as a series of non-
reactive functional elements (or a sequence of operational 
steps) to carry out the measurement. In metrological prac-
tice, the following assumptions can be made:  
•      The great majority of measuring systems and devices     

        (elements) may be regarded to have linear characteris- 
         tics or, at least in narrow ranges around the operating 

point, a linear characteristic may be assumed. 
• The steady-state characteristic of a measuring system is 

always  related to well adjusted and known operating 
conditions (idea of the fictitious ideal measurement). 

• The “real world of measurement” may be taken into 
consideration by means of deviations of the real influ-
ence quantities and other parameters from the above 
mentioned well adjusted and known conditions. 

 
         On the above assumptions, in steady state, almost all 
functional elements or operational steps of a measuring 
system or process may be described by an approximately 
constant transmission factor and by deviations representing 
the imperfections of the measurement. Deviations may have 
impact on transmission factors and they may result in offsets 
of the outputs. Fig. 4 illustrates this concept of a disturbed 
ideal element that can mathematically be expressed by the 
following relationship. 
 
XKOUT=XkIN(GOK+δGOK)+δZK       (3.1) 
 
where: XkIN - (random) quantity acting on the input of the 
element k; XKOUT - (random) quantity at the output of the 
element k; GOK - (steady-state) transmission factor of the 
element k which depends on the chosen operating point; 
δGOK - parameter deviation which results in a deformation  
of the characteristic; δZK - parameter deviation which results 
in an offset of the output.  

ksZδ

OUTkX

0 kGδ0 kG

INkX ( )0 0k kG Gδ+

 
Fig. 4: Concept of an “disturbed ideal” transmission element 
 
The above concept does include the case of the mathemati-
cal combination of (random) quantities, e.g. by multiplica-
tion of a resistance with a current in order to obtain the volt-
age across this resistance. In order to ensure the linear re-
sponse characteristic, the expectation values of the addi-
tional input quantities are required to be constant, 
E[XKIN2]= constant. 
 
 3.2 Modelling components used 
 For schematic depiction of the cause-and-effect rela-
tionship of the measurement, only three types of compo-
nents are employed: 
 
(1) Parameter sources (SRC): provide or reproduce a 

measurable quantities, e.g. the measurand (see Fig. 5). 
 
(2) Transforming units (TRANS): represent any kind of 

parameter processing and influencing (see Fig. 6). 
(3) Indicating units IND: indicate their input quantities 

(see Fig. 7). 
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Fig. 5: Graphical scheme of a parameter source. (a) general 
case when providing a measurable quantity; (b) material 
measure; symbols: XSRC – (random) quantity provided by 
the source; δZSRC - deviation due to the imperfection of  the 
component quantities, XTOUT – output quantity; δZPT – su-
perimposing deviation, e.g. due to the susceptibility of the 
unit to external conditions (P) 

 
Fig. 6: Graphical scheme of a transforming unit. symbols: 
h0T - steady-state response function which defines the pa-
rameter processing (e.g. combination of quantities); XTIN – 
primary input quantity; XTj – additional input quantities 

 
Fig. 7: Graphical scheme of an indicating unit. XIN – input 
quantity of the unit; symbols: XIND – indicated quantity; 
∆ZINSTR – instrumental error; δZPI – deviation due to the 
susceptibility of the unit to external conditions P 
 
 3.3 Modelling procedure 
 The modelling procedure consists of five elementary 
steps: 
 
1st step: Description of the measurement; identification of 
the causal quantity and of the measurand;  identification of 
the measurement method used. 
 
2nd step: Setting up schematically the cause-and-effect 
relationship of the (fictitious) ideal measurement ( Fig. 8).  
 

Fig. 8: Example: Graphical depiction of the cause-and-effect 
relationship of a (fictitious) ideal measurement 
 
3rd step: Inclusion of all imperfections, influences and  

effects of incomplete known parameters; insertion into the 
cause-and-effect relationship by means of deviations from 

SRCX

SRC
SRCX

(a) 0SRCX SRCX(b)

SRCZδ

SRC
the above ideal measurement (Fig. 9); expressing the result-
ing cause-and-effect relationship in mathematical terms, e.g. 
(see Fig. 9) XIND =h0(Y0,δZSRC,δZT,∆ZINSTR,δXIND). 
 

Y
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Fig. 9: Example: Graphical depiction of the cause-and-effect 
relationship of a real measurement 
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( )PTZ Pδ

OUTkX
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TRANS
4th step: Identification and consideration of possible corre-
lations: 
• 

• 

Consideration of functional dependencies by introducing 
them into the cause-and-effect relationship of the real 
measurement (see 3rd step), or 
Taking (estimated or experimentally determined) correla-
tion coefficients into account when propagating the un-
certainty contributions (see equation (2.8)). 

 
5th step: Conversion of the cause-and-effect relationship 
into the (steady-state) model equation, e.g. (see 3rd step) 
Y=f0(XIND,δZSRC,δZT,∆ZINSTR,δXIND), or generally expressed:  

INDX

( )PIZ Pδ

INX

INSTRZ∆

IND
 

1
0 1 2 0 1 2( , ,..., ) ( , ,..., )N NY h X X X f X X X−= = (3.2). 

 
 3.4 Role of the measurement method used 
 The structure and the chaining sequence of he cause-
and-effect relationship are determined by the method of 
measurement used. 
 Direct measurements result in a un-branched chain of 
the components used. The generic structure of the cause-
and-effect relationship of a direct measurement is shown in 
Fig. 10.  

SRC TRANS1

TRANSm

...

T1 ...X

Tm... X

SRCX
OUT1X

INDXX

( )P

IND
... XINTn

INDXSRC IND

*Y
*Y

( )* * *
0INDX h Y=

Fig. 10: Generic structure of the cause-and-effect relation-
ship of a direct measurement. symbols: XT1,.., XTn – addi-
tional input quantities; XSRC – quantity provided by the 
source; XIND – indicated quantities; ∆ZINSTR – instrumental 
error; P – external conditions, other symbols see 3.2 
 
 Other methods are used to achieve high accuracies and 
to ensure traceability of calibration results. These methods 
mostly result in branched cause-and-effect relationship. 
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Examples are given with the direct comparison of two indi-
cating measuring instruments and with the substitution 
method. 
 Fig. 11 and 12 show the generic structures of the 
cause-and-effect relationships of these two methods. When 
deriving the mathematical cause-and-effect relationships 
from block diagrams having branched structures, e.g. the 
above methods, for each branch a separate (partial) equation 
is to be set up (see 4). 

Fig. 11: Generic structure of the cause-and-effect relation-
ship of a direct comparison of indicating measuring instru-
ments. symbols: TRANSX – transforming unit of the X-path; 
TRANSS – reference transforming unit; INDX – indicating 
unit under test; INDS – indicating standard; other symbols 
see Fig. 10. 

Fig. 12: Generic structure of the cause-and-effect relation-
ship of a measurement using the substitution method. sym-
bols: SRCX – material measure under test; SRCS – standard 
(material measure); TRANSX – transforming unit of the X-
path; TRANSS – transforming unit of the S-path. IND – 
comparator, other symbols see Fig. 10 
 
 From the mathematical cause-and-effect relationship, 
the model equation may be derived. In case of block dia-
grams with branched structures, influences and imperfec-
tions of the commonly used path can be neglected. 

 
 EXAMPLE 

 
         4.1 Modelling procedure 
 The modelling procedure is explained with the calibra-
tion of a liquid-in-glass thermometer. The example has been 
simplified. 
1st step: 
• 

• 
• 

• 

• 
• 

Description of the measurement: A mercury-in-glass 
thermometer is to be calibrated in steady state at 20 °C. 
Together with a standard thermometer, the instrument 
to be calibrated is immersed in a thermostatted and 
stirred water bath (see Fig. 13). 

Causal quantity: Temperature of the water bath, tBath.  
Measurand: Instrumental error ∆tx of the thermometer 
to be calibrated at the 20 °C scale value. 
Measurement method: Direct comparison of two indi-
cating instruments. 

INDSt INDXt
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Bath St t= Xt 
 
 
 
Fig. 13: Example: Calibration of a liquid-in-glass thermo-
meter in a water bath. tS – temperature of the standard; tx – 
temperature of the thermometer under test;  tINDX, tINDS indi-
cated temperatures 

BathXtδ
 

 
2nd step:  
Fig. 14 shows the block diagram of the cause-and-effect 
relationship of the (fictitious) ideal measurement. 
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Fig. 14: Cause-and-effect relationship of the ideal meas-
urement according to the chosen example. SRC - 
thermostatted bath; TRANSX, TRANSS – temperature 
gradients in the bath, INDX - thermometer to be calibrated; 
INDS - standard thermometer; other symbols see text 
 
3rd step:  
Fig. 15 shows the cause-and-effect relationship of the real 
measurement. The following imperfections have been in-
cluded: ∆tS instrumental error of the standard (known and 
unknown contributions); δtBathX deviation of the temperature 
of the Instrument to be calibrated from bath temperature tBath 
that is assumed to be equal to the temperature of the stan-
dard. The quantities tINDX and tINDS are taken from repeated 
reading of the thermometers. In mathematical terms, the 
cause-and-effect relationship of the real measurement reads: 
 

X-path: tINDX=tBath+δtBathX+∆tX  
S-path: tINDS=tBath+∆tS 

 
4th step: (Inclusion and consideration of correlations) 
 For the sake of simplification, all involved quantities, 
parameters and observations are assumed to be independent 
of each other. 
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5th step: 
 From the above cause-and-effect relationship of the 
real measurement, the following model equation is obtained: 
 
• ∆tx=tINDX-tINDS+∆tS-δtBathX 
 
 4.2 Evaluating the measurement uncertainty 
 Due to the linear model equation of the chosen exam-
ple (see 4.1), the Standard GUM Method may be used to 
evaluate the measurement uncertainty. After modelling the 
measurement, the most important step is to evaluate the 
involved quantities tINDX, tINDS, ∆tS and δtBathX. To each of 
these quantities an expectation value and an associated stan-
dard uncertainty are to be assigned: tINDX and tINDS may be 
evaluated by statistical analysis of series´of repeated obser-
vations (method type-A). The knowledge about ∆tS should 
be taken from the calibration certificate of the standard. 
δtBathX may be estimated from the manufacturer´s informa- 

vations (method type-A). The knowledge about ∆tS should 
be taken from the calibration certificate of the standard. 
δtBathX may be estimated from the manufacturer´s informa- 
tion sheet about the bath (method type-B). Table 1 gives an 
example of such an evaluation. 
tion sheet about the bath (method type-B). Table 1 gives an 
example of such an evaluation. 

  
Fig. 15: Cause-and-effect relationship of the real measure-
ment according to the chosen example. SRC - thermostatted 
bath; TRANSX, TRANSS - temperature gradients in the 
bath; INDX - thermometer to be calibrated; other symbols 
see Fig. 13 and text.  

Fig. 15: Cause-and-effect relationship of the real measure-
ment according to the chosen example. SRC - thermostatted 
bath; TRANSX, TRANSS - temperature gradients in the 
bath; INDX - thermometer to be calibrated; other symbols 
see Fig. 13 and text.  
  
Table 1: Example for the evaluation of the input quantities Table 1: Example for the evaluation of the input quantities 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
                            5.  CONCLUSIONS                             5.  CONCLUSIONS 
  
        The modelling procedure presented is applicable to the         The modelling procedure presented is applicable to the 
most areas of uncertainty evaluation of measurements per-
formed in the steady state. It is clearly structured into five   
elementary steps, and only three types of modelling compo-
nents are employed. This procedure has been successfully 

presented in uncertainty training courses attended by a total 
of more than 400 engineers and physicists.  

most areas of uncertainty evaluation of measurements per-
formed in the steady state. It is clearly structured into five   
elementary steps, and only three types of modelling compo-
nents are employed. This procedure has been successfully 

presented in uncertainty training courses attended by a total 
of more than 400 engineers and physicists.  
        It may be utilized for an interactive computer-
controlled modelling and uncertainty-evaluating procedure. 
        It may be utilized for an interactive computer-
controlled modelling and uncertainty-evaluating procedure. 
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available value contribution

INDXt

BathXtδ

St∆

INDSt

4 observations:
mean :  19,86000 °C
SD     :    8,16 · 10-3 °C
4 observations:
mean :  20,00625 °C
SD     :    8,54 · 10-3 °C
manufacturer̀ s statement:
max. deviation

± 15 · 10-3°C
calibration certificate:
error: :  -0,05 °C
U(k=2) 20 · 10-3°C

gaussian
(PME)

gaussian
(PME)

rectangular

gaussian
(PME)

19,86000 °C

20,00625 °C

0

- 0,05 °C

4,08 · 10-3 °C

4,27 · 10-3 °C

8,65 · 10-3 °C

10,00 · 10-3 °C
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