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Abstract − A measurement process represents a controlled 
learning process in which various aspects on uncertainty 
analysis are investigated.  

A measurement process is performed if information 
supplied by it is likely to be considerably more accurate, 
stable and reliable than the pool of information already 
available.  

The substantial amount of information, got with respect 
to the conditions prior to the result after the measurement 
process is performed, can be connected to the "Kullback's 
principle of minimum cross-entropy".  

This, as it is known, is a correct method of inductive 
inference when no sufficient knowledge about the statistical 
distributions of the involved random variables is available 
before the measurement process is carried out except for the 
permitted ranges, the essential model relationships and some 
constraints, gained in past experience, valuable usually in 
terms of expectations of given functions or bounds on them. 

 In this paper the authors pointed out the connection 
between the evaluation of the uncertainty in a repeated 
measurements process and the "Kullback's principle of 
minimum cross-entropy".  
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1. THE PRINCIPLE OF MINIMUM JOINT CROSS-
ENTROPY 

 
We consider a general measurement process which treats 

multiple measurands and yields simultaneously multiple 
results or estimates.  

A measurement process has imperfections that give rise 
to uncertainty in each measurement result. The assessment 
of uncertainties associated to the results is given by 
statistical tools only if all the relevant quantities involved in 
the process are interpreted or regarded as random variables 
either they are random in nature or purposely randomized. 

 In other terms all the sources of uncertainty are 
characterized by probability distribution functions, the form 
of which is assumed to either be known from measurements 
or unknown and so conjectured. 

We classify all the involved quantities into two principal 
sets represented by row vectors:  

1) output quantities Y , in number of m 

2) input quantities X  which comprise the rest of 

quantities, in number of n. 
Let ( )yx,  the actual realizations of ( YX , )

n

 in a particular 

occasion, they represent a state of the measurement process 
i  that occasion. The process has a set D of possible states 
( )[ ]Dyx ∈,  which identify the joint domain of the random 

variables ( )YX , . 

Further, often, it is possible in a measurement process to 
individuate mathematical and/or empirical models which 
link input and output quantities through functional 
relationships of type: 

 
( )nii XXgY ,,L1= ; i=1, ..., m           with m ≤ n  (1) 

 
In practical situations the transformation defined by (1) is 
differentiable and invertible.  
The mutual behaviour between the input quantities X  and 

Y  is statistically drawn by the joint probability ( )yxf ,  

which can be written as: 
 

( ) ( ) ( )xyfxfyxf |, =      (2) 

 
where ( )xf  is the marginal joint density of the input 

quantities X  and ( )xyf |  is the conditional joint density of 

the output quantities Y , given xX = . 

In the Bayesian approach we have another important 
linkage between  ( )xf  and ( )yxf , , that is: 

 
( ) ( ) ( )xyfxfcyxf X |, =      (3) 

 
where ( )yxf X ,  is the posterior joint density of the input 

quantities X , whose ( )xf  is interpreted as the prior joint 

density and ( ) ( )yxxyf ,| l= , regarded as a function of x  

for prefixed output values y , represents the well-known 

likelihood; c is a "normalizing" constant necessary to ensure 
that the posterior joint density integrates, with respect to x , 

to one. 
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In practical situations the measurement process 
represents a controlled learning process in which various 
aspects on uncertainty analysis are illuminated as the study 
proceeds in an up-to-date alternation between conjecture and 
experiment carried out via experimental design and data 
analysis.  

The substantial amount of information, got with respect 
to the conditions prior to the result after the measurement 
process is performed, can be connected to the "Kullback's 
principle of minimum cross-entropy".  

This, as it is known, is a correct method of inductive 
inference when no sufficient knowledge about the statistical 
distributions of the involved random variables is available 
before the measurement process is carried out except for the 
permitted ranges, the essential model relationships and some 
constraints, gained in past experience, valuable usually in 
terms of expectations of given functions or bounds on them. 
 
1.1 The evaluation of measurement uncertainty based on the 
principle of minimum joint cross-entropy (MINCENT) 
 

The authors propose to apply the Kullback's principle to 
the joint density function ( )yxf ,  expressed by (2) but 

taking into account the Bayesian relation (3) which 
discriminates between the prior densities of the input 
quantities X  and the conditional densities of the output 

quantities given the input ones. 
To this end we introduce the joint cross entropy in the 

following manner: 
 

( ) ( )
( )

( )
( )








== ∫ YXf

YXf
Edydx

yxf

yxf
yxfS

D ,

,
ln

,

,
ln,

00

  (4) 

 
where mn dydydydxdxdx LL 11 == ,  and where ( )yxf ,0 , 

which a priori must be known, is defined as an "invariant 
measure" function. 

 In fact, since ( )yxf ,  and ( )yxf ,0  transform in the 

same way under a change of variables, S remains invariant 
to any coordinate transformation. 

It can be shown that ; the equality sign will hold if 0≥S
( )yxf ,  = ( )yxf ,0  almost everywhere (except possibly on a 

set of measure zero). 
The joint cross entropy is an adequate information 

measure since, in the space of probability distributions, 
measures some kind of information amount necessary to 
change a prior poor knowledge on the measurement process, 
represented by ( )yxf ,0 , into a more circumstanciated 

posterior joint distribution described by ( )yxf , . 

It also appears that, in some sense, the larger the 
divergence between  and ( )⋅f ( )⋅0f , the larger will be the 

value of S; this justifies our calling S also measure of 
directed divergence. 

Further one can prove, up to a constant factor, that the 
joint density ( )yxf ,   which minimizes the cross entropy 

given by (4) is favored over other possible densities since 

minimizing that entropy, subject to arbitrary constraints, 
leads to satisfy axioms that are accepted as requirements for 
an efficient information measure.  

These axioms are all based on one fundamental 
principle: if a problem can be solved in more than one way, 
the decisions should be consistent. 

 
 

2. THE REPEATED MEASUREMENTS  
 

We repeat n times the measurements process on the 
same measurand according to the "repeatability conditions" 
estabilished by the "Guide to the expression of uncertainty 
in measurement" (ISO 1993).  

We may conveniently regard any set of measurement 
results ( )nyyy ,,L1=  as the n-dimensional realization of an 

induced random vector ( nYY ,,L1 )Y =  which we can call 

output vector. 
Let us now assign the random variable X to the 

measurand and express its occasional realization as x which 
we suppose constant during all the replications. It is correct 
to introduce the conditioned random vector xXY =|  

constituted by n conditioned random variables 
{ }nixXYi ,,;| L1==  which are conditionally independent 

and identically distributed, assuming X=x.  
We suppose that the conditional statistic parameters are 

given by: 
 

{ }
( ){ }
( )( ){ }








==−−
σ==−

==

0

22

xXxYxYE

xXxYE

xxXYE

ji

i

i

|

|

|

   (5) 

 
for i≠j and   i,j=1, ...,m. 

Obviously, from (5) we can verify that: 
 

{ } { }
( ){ }
( )( ){ }








=−−
σ=−

=

0

22

xYxYE

xYE

XEYE

ji

i

i

     (6) 

 
We consider the unknown joint probability density of the 

measurand X and the random vector Y , that is: 

 
( ) ( ) ( )xyfxfyxf |, =       (7) 

 
We suppose that all the previous knowledge and 

experience is memorized into a prior joint density as 
follows: 

 
( ) ( ) ( )xyfxfyxf |, 000 =      (8) 

 
We introduce the cross-entropy or the directed 

divergence (or the discrimination function) between 
( )yxf ,0  and ( )yxf , defined by: 
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( ) ( ) ( ) ( )
( ) ( ) ( ){ }XSESdydx

xyfxf

xyfxf
xyfxfS YX +== ∫ ∫

∞+

∞− |

|
ln|

00

(9) 

 
with the compact notation ndydydydy L21=  and where: 

 

( ) ( )
( )dx
xf

xf
xfS X

0

ln∫
+∞

∞−

=     (10) 

 
is the d vergence corresponding to the measurand and i

( ){ }XSE Y  is the expectation of conditional the output 

divergence, that is: 

( ){ } ( ) ( )∫
+∞

∞−

= dxxfxSXSE YY     (11) 

and 

( ) ( ) ( )
( ) yd

xyf

xyf
xyfxSY |

|
ln|

0

∫
∞+

∞−

=    (12) 

 
In deriving the first term at the member of (9) we have 

taken into account the normalizing condition: 
 

( )∫
+∞

∞−

=1ydxyf |       (13) 

 
Due to the conditional indipendence of the output 

quantities  we can write: nYY ,,L1

 

( ) ( )

( ) ( )



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=

=
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=

=
n

i
i

n

i
i

xyfxyf

xyfxyf

1
00

1

||

||
    (14) 

 
( xyf i | ) ) and  being the common marginal 

conditional densities at the generic argument , assuming 

X=x.  

( xyf i|0

iy

Obviously the first one of (14) makes inessential the 
third constraint (5). 

 By substituting (14) into (12) we deduce: 
 

( ) ( ) ( )
( )dy

xyf

xyf
xyfnxSY |

|
ln|

0

∫
+∞

∞−

=    (15) 

 
where we have again used the normalizing condition but for 
the marginal density, that is: 
 

( )∫
+∞

∞−

= 1dyxyf |      (16) 

 
Now, by referring to (15), we minimize the marginal 

directed divergence: 
 

( ) ( ) ( )
( )dy

xyf

xyf
xyfxS

|

|
ln|

0

∫
+∞

∞−

=    (17) 

 
subject to the first of constraints (5) and to (16).  

It is known that: 
( ) 0≥xS       (18) 

and the equality sign will hold if ( ) ( )xyfxyf || 0=  almost 

everywhere, that is, except on a set of measure zero. 
The divergence S(x) given by (17) can be considered as 

a functional of ( )xyf |  in the distribution space and for 

brevity we can write: S(x)≡I(f). 
It can be shown the convexity of the directed divergence 

functional. 
In fact by considering in the distribution space two 

distinct densities ( )xyf |1  and  we get: ( xyf |2 )
 

( )[ ] ( ) ( ) ( ) 1011 2121 ≤τ≤τ−+τ≤τ−+τ withfIfIffI  (19) 

 
Consequently the functional has an unique minimum with 
respect to ( )xyf | . 

Using  Lagrange's method of undetermined multipliers 
the density which minimizes S(x) is given by: 

 

( ) ( ) ( )[ ]2
210

0

xyyexyfxyf −λ+λ+λ−= ||    (20) 

 
where the Lagrange multipliers  are determined 

by using the given constraints. 

,,, 210 λλλ

In order to develope a concrete function for ( )xyf |  it is 

necessary to define the prior density . ( )xyf |0

For simplicity we impose: 
 

( )xyf |0 ≡constant=k     (21) 

 
Taking (21) for an infinite interval implies assuming an 

"improper" prior distribution. In this case minimization of 
directed divergence (17) is equivalent to maximization on 
Jaynes entropy defined by: 

 

( ) ( )dyxyfxyfH |ln|∫
+∞

∞−

−=     (22) 

 
The minimizing distribution is however still proper since it 
has to satisfy the given constraints. 
If we adopt (21) by referring to (20) and to the given 
constraints, after simple manipulation we obtain: 
 

( )
( )

2

2

2

2

1 σ

−
−

σπ
=

xy

exyf |     (23) 

 
By substituting (23) into the first of (14) we obtain: 
 

( ) 2

2

2

2

1 χ
−

σπ
= exyf

n
n|      (24) 

 
where χ  is the realization of: 2

( )
2

1

2

2

σ

−
=χ
∑
=

n

i
i xY

      (25) 
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which is a chi-squared random variable with n degrees of 
freedom.  

Now we consider the Bayesian inference and introduce 
the posterior density of the measurand that is: 

 
( ) ( ) ( )xyfxfcyxf X ||

00
=     (26) 

 
where ( 0100 nyyy ,,L= )  is the set of effective results at the 

particular occasion when X=x and c is a convenient 
normalizing constant. 

By introducing (24) we obtain: 
 

( ) ( )
( )

2
1

2
0

2

0
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i xy
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If also is supposed constant we have: )(xf
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where  is the up-to-date final normalizing constant. c ′′′

Due to the normalizing condition, it is easy to verify 
that: 
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∑
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The posterior expectation of the measurand is given by: 
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and the posterior variance is given by: 
 

{ }
n

yXVar
2

0

σ
=|      (31) 

 
as would be expected. 

If  is unknown an additional assumption is needed. 
We can use the so-called conformity property, that is: 

2σ
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or equivalently, by imposing 
 

( ) ( ) ( )0000 yyyXyX ii −−−=−  

 
and using (30),we have: 
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which, recalling (31), finally yields the well known formula: 
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−
=σ

n

i

i

n

yy
1

2

002
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     (34) 

 
 

 
3. CONCLUSIONS 

 
The proposed evaluation of measurement uncertainty is 
based completely on Bayesian analysis and on the principle 
of minimum cross-entropy. The theory is universally 
applicable to most measurement tasks including complex 
non linear adjustment and, in particular, in case where the 
well-established least-squares or maximum likelihood 
techniques fail. 
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