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Abstract −− The evaluation of key comparison data is
discussed, the general case of correlated data being
considered. Particular attention is paid to a simplified
procedure for data evaluation, founded on a mixture of
distributions associated with the results from the institutes
participating in the comparison. The suggested approach
uses the model of an interlaboratory experiment from
ISO 5725 and uncertainty evaluation in accordance with the
Guide to the Expression of Uncertainty in Measurement.
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1. INTRODUCTION

The mutual recognition of national measurement
standards and of calibration and measurement certificates is
an essential feature of international cooperation for quality
assurance of measurements. A main objective of the
MRA [1] is “to provide … a secure technical foundation for
wider agreements related to international trade, commerce
and regulatory affairs”. The MRA is realized through key
comparisons (KCs) and supplementary comparisons, and
through the quality systems of the national metrological
institutes (NMIs). The MRA poses the following problems:
• Establishing the degrees of equivalence (DoEs) of

measurement standards on the basis of KC data
• Confirmation of the assigned NMI capabilities on the

basis of KC data
• Linking the results of Regional Metrology Organization

(RMO) comparisons to Comité International des Poids
et Mesures (CIPM) KCs.

In this paper statistical methods for the solution of these
problems are considered.

The choice of the data evaluation algorithm should be
dictated by information relating to the measurement data.
The statistical methods used are based on assumptions for
which relevant valid information should be made available.
Without such information the quality of the results obtained
cannot be determined. Statisticians working in metrology
have an obligation to provide a framework for the correct
application of these methods. Data evaluation guidelines
should explain the conditions of use, which should be
formulated so as to avoid misleading interpretations.

The BIPM (Bureau International des Poids et Mesures)
Director's Advisory Group on Uncertainty has developed
some guidelines for KC data evaluation [2], in which two of

the above problems are addressed when the measurements
are mutually independent. However, correlation between
data often occurs in practice, for reasons of traceability to a
common source, the use of the same measurement method,
etc. So, handling correlated data is important, as is the
linking of RMO and CIPM KCs, which have their own
correlation structure through the NMIs in both comparisons.

If the data covariance matrix is known a priori (or
quantifiable from valid information), a straightforward
extension of the guidelines [2] permits correlation to be
treated. However, often such information is not available.
Quantifying the covariance matrix requires detailed analysis
of the sources of uncertainty for each participating NMI.
Even after such an analysis, which requires the joint efforts
of experts from these NMIs, doubts concerning the
quantitative expressions of correlation can remain. So other
approaches to handle correlated data are of interest. The
main attention in the paper is given to a simplified method
for handling correlated data when inadequate information is
readily available to quantify the covariance matrix.

Section 2 presents the rationale of the approaches
discussed. Section 3 considers a model based on the
principles of ISO 5725 and the use of a mixture distribution
to summarize the KC data. Section 4 is concerned with data
analysis and using these models. Section 5 discusses the
linking of KCs. Section 6 indicates some alternative
approaches. Section 7 contains concluding remarks.

2. RATIONALE

The DoE [1] is the degree to which the NMIs’ standards
are consistent with reference values determined from the
KCs and hence are consistent with one another. The DoE of
each measurement standard is expressed quantitatively by
two terms: its deviation from the KC reference value
(KCRV) and the uncertainty of this deviation (at a 95%
level of confidence):

      {di, 2u(di)},      di = xi – xref,        (1)
where xi is the value provided by the ith NMI, and xref

denotes the KCRV. The DoE of national standards is
interpreted as the equivalence of participating NMIs'
measurements. For a pair of standards the DoE is expressed
as the difference between the results obtained and the
uncertainty of this difference:
      {di,j, 2u(di,j)},      di,i = xi – xj.        (2)

The main data evaluation problem is establishing the
KCRV, for which the valid application of mathematical and
statistical methods is required to avoid subjectivism. Often

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC8 



the weighted mean, with weights equal to the inverse
squares of the standard uncertainties associated with the
NMIs' results is used as the KCRV, an estimate having the
smallest uncertainty under the following conditions:
1. The standard uncertainties can be regarded as valid
2. The value provided are mutually independent
3. A Gaussian distribution can be assigned to the

measurand realized by each participating NMI.
For periodical comparisons the Working Group of the

respective Consultative Committee of the CIPM can agree
the relevant uncertainty components and their manner of
evaluation. Doing so helps to confirm the validity of the
combined standard uncertainties for the participating NMIs.

For a new KC, when the aims are to establish the
reproducibility of results and reveal the reasons for the
differences between them, condition 1 is less likely to apply.
The only information that can arguably be taken as valid is
the characteristics of reproducibility for each NMI estimated
from a large number of measurements. In terms of the
provided uncertainties, i f not all the corresponding coverage
intervals "overlap sufficiently", the implication is that some
of these uncertainties are underestimated and hence invalid.

In quantifying the covariance matrix, according to the
GUM a probabilistic approach should be used to treat both
random and systematic effects. Random effects are
independent within and between the NMIs. Reasons for the
mutual dependence of systematic effects in different NMIs
include common traceability, similar equipment, and similar
realization of the measurement procedure. Because it can be
difficult to quantify the covariance matrix, covariances are
often taken as zero.  However, doing so might result in an
unjustified simplification of the data evaluation problem,
including the use of an inadequate model for the KC data.

The assignment of a Gaussian distribution to an NMI's
measurand may be attributed to an application of the Central
Limit Theorem or to the fact that only the measurement
result and the associated uncertainty are provided, no other
information on the form of distribution being available.

Since the weighted mean is not always the best estimate
for the KCRV, its properties should be compared with those
of alternative estimators. An unjustified application of the
weighed mean can result in (1) the attraction of the KCRV
to the result having the smallest associated uncertainty, (2)
the underestimation of the uncertainty associated with the
KCRV and, consequently, (3) the underestimation of the
uncertainty associated with the deviation of the result from
the KCRV. The last item can lead to an invalid conclusion
about the consistency of KC data.

Various approaches can be proposed for KC data
evaluation when not all conditions 1–3 are satisfied:
• Adjustment of the data to the model. For example, the
uncertainties that seem to be unreasonably small can be
enlarged or data considered inconsistent with the remainder
can be disregarded. Adjustment is reasonable if there is
adequate opportunity for thorough analyses of the reasons
for uncertainty underestimation and all participants accept
those reasons.
• Generalization of the model implied by conditions 1–3.
Other estimators for the KCRV can be obtained if the
correlation between data from different NMIs can be taken

into account or other forms of probability distributions can
be considered. For this approach the main problem is
quantifying the covariance matrix.
• Use of a different model. Such a model may require less
prior information than implied by condition 1, may not
require the mutual independence assumption of condition 2,
but would employ condition 3, which is often expected to be
reasonable in practice.

This paper addresses the third approach, assuming that:
1. The data from different NMIs are mutually dependent.
2. Some assigned uncertainties can be regarded as invalid.
3. The characteristics of the reproducibility of results

inside each NMI are carefully estimated.
A model relating to these conditions is introduced. The

interpretation of the KCRV and the DoE are discussed
within the context of this model. A solution for the above
three problems of KC data evaluation is given.

3. DATA MODEL

A KC is an example of an interlaboratory experiment.
Accordingly, the measurement results for each participating
NMI can be described by the model given in ISO 5725 [3]:

i i ix a m ε= + + ,  (3)

where xi, a, mi and εi are, respectively, the measurement
result, measurand value, systematic bias and random error in
xi for the ith of the N  NMIs participating in the KC.

According to the MRA, “The degree of equivalence … is
taken to mean the degree to which these standards are
consistent with reference values determined from the KC
and hence are consistent with one another”. The consistency
with one another means the closeness of the NMIs' results.

The measurand realized by the dispersion of the data for
the ith NMI can be described by a distribution function
Fi(x), with expectation a + mi and variance 2

iσ . Moreover,
the mixture distribution [4]

( ) (1/ ) ( )jF x N F x= ∑  (4)

can be used to describe the distribution for the measurand of
which the data provided by the NMIs are realizations. It is
not to be confused with a distribution for the measurand
relating to the KCRV [2].

Letting ,(1/ ) im N m= ∑  the expectation EF(x) and
variance of F(x) are, respectively,

    ,m a m= +    2 2 2(1/ ) (1/ ) ( ) .i iN N m mσ σ= + −∑ ∑        (5)

It is suggested that the KCRV is determined as EF(x):
.refx a m= + (6)

It can be considered as an indicator of the SI value [1]:
“… there may be difficulty in relating results to the SI.
Nevertheless, the key comparison reference value and
deviations from it are good indicators of the SI value”. In
the approach here the DoE for the ith NMI,

    ,i i i id EX EX a m a m m m= − = + − − = −   (7)

can be interpreted as a difference between the “laboratory
reference value” and the KCRV, which characterizes the
systematic bias of the results of that NMI from the KCRV.
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4. DATA ANALYSIS

In the approach here the unbiased estimate of the KCRV
is the simple mean (1/ )ref ix N x= ∑

)
and ( )refu x

)
is given by

2 2 2 2
( ) ,((1/ ) ) (1/ )ref i iu x u N x N u= =∑ ∑
)                (8)

where ui denotes the reproducibility standard uncertainty si

for NMI i. Accordingly, the DoE and associated uncertainty
are given by

2 2 2 2, ( ) (1 2 / ) (1/ ) .i i i i jd x x u d N u N u= − = − + ∑ (9)

In this case the associated uncertainty is caused only by
the random dispersions, with standard uncertainty ui, of the
NMI's data. Since it is used for internal quality control, the
precision of measurement results inside each NMI is usually
characterized sufficiently well. The mutual dependencies
between the data due to similar systematic biases are
revealed automatically in the form of a mixture distribution.

Even if the NMIs' distributions Fi(x) are Gaussian, F(x)
can have a complex form, perhaps asymmetric or
multimodal. But, if all the Fi(x) are Gaussian, the
distributions for the KCRV and the di are also Gaussian.

Thus, to implement the approach, each NMI presents its
measurement result and the standard uncertainty due to the
associated random dispersion (reproducibility standard
deviation). No quantification of covariance is required. The
(combined) standard uncertainty associated with the
measurement result is not used directly, but is required for
confirmation of the stated capabilities of the NMIs.

An advantage of this approach is in preliminary
comparisons where there might be doubt about the validity
of the provided uncertainties, the comparisons being mainly
directed at revealing systematic biases in the NMIs' results.
These biases are the predominant reason for the dispersion
of results from the NMIs. As in the conventional approach
and as stated in section 3, the KCRV can be considered as
an estimate of the SI value. If a valid estimate of the SI
value is available, estimates of these biases in the NMIs'
measurements are obtainable immediately, as are estimates
of the systematic deviations between NMIs. The estimation
of the SI value is a more general task than that of
determining systematic differences between the results from
the NMIs. But to address this task requires additional prior
information, which, if absent, should not be “invented” to
permit solution of the general task. Doing so would result in
invalid conclusions about the equivalence of measurement
standards and the NMIs' capabilities.

Also, in the context of the given approach the strict
solution to the problem of checking the conformity of the
KC data with the assigned uncertainties is not generally
possible. That solution would again require the covariance
matrix of the data to be quantified. However, most of the
results would be expected to satisfy the condition

2 2 1/2
c c2( ( ) ( )) ,i j i jx x u x u x− ≤ +                    (10)

where uc(xi) is the combined standard uncertainty associated
with xi (i.e., including the bias uncertainty). If this check
fails in some instances, the results that are inconsistent with
the majority of the others should be identified. Then the
check of capabilities should be repeated without this result.

5. LINKING OF RMO AND CIPM KEY COMPARISONS

According to the MRA, “The results of the RMO key
comparisons are linked to key comparison reference values
established by CIPM key comparisons by the common
participation of some NMIs in both CIPM and RMO key
comparisons”. Number the “link NMIs”, i.e., those involved

in both comparisons, 1 to m.  Denote by xk
(1) (= xk) and )2(

kx

the value provided by the kth of these NMIs in the CIPM
and RMO comparison, respectively. Then

           ,2,1    ,)/1(
)()( =∑= rxmx

r
k

r                          (11)
denote the means in the two comparisons of the values
provided by the link laboratories.

The following procedure is suggested:
1. For each NMI participating in both comparisons check

the consistency of its realization of the comparisons:

,22)1()2(
kkk uxx ≤−     k = 1, …, m.   (12)

2. If the stability check (12) is satisfied, form the

DoE ))(2,( )2()2(
ii dud for each NMI that participates

only in the RMO comparison from
(2) (2) ,i i refd x x= −   2 (2) 2 2 (2)( ) ( ) ( ).i ref iu d u x u x= +     (13)

3. Otherwise, form ))(2,( )2()2(
ii dud from

(2) (2) (2) (1)

2 (2) 2 2 (2)

2 (2) (1)(1)

( ) ,

( ) ( ) ( )

( ) 2cov( , ).

i i ref

i ref i

ref

d x x x x

u d u x u x

u x x x x

= − − −

= +

+ − −

    (14)

u(di
(2)) can be derived from (14) in terms of the stipulated

values and uncertainties and readily evaluated:
( )2 (2) 2 (2) 2 2

2
1 1

21
( ) ( ) ( ) ( ).

N m

i i j k
j k

N m
u d u x u x u x

N m N= =

−
= + +∑ ∑ (15)

It is emphasized that the above uncertainties are related
only to the  random dispersion of the data.

For the laboratories participating in both comparisons, a
further estimate of the DoE is available. Its manner of use
depends on the purposes of the common participants. One
reasonable approach would be to compare the DoEs between
the ith and jth NMIs participating in both comparisons , viz.,

)1()1()1(
, jiji xxd −=  and .)2()2()2(

, jiji xxd −=

6. ALTERNATIVE APPROACHES

There is a further use of a mixture distribution for the
evaluation of DoEs, based on the principle of propagation of
distributions [5], a generalization of the law of propagation
of uncertainty described in the GUM. The application of this
principle is reasonable when the distributions of the
quantities concerned are not all Gaussian. This case arises
when regarding the pooled data as a sample from a mixture
distribution, which has a complex form even when the input
quantities are Gaussian.   

The MRA permits the DoE to be expressed without
using a KCRV: “In some exceptional cases, a Consultative
Committee may conclude that for technical reasons a
reference value for a particular key comparison is not
appropriate; the results are then expressed directly in terms

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC8 



of the degrees of equivalence between pairs of standards”.
This statement implies the estimation of deviations between
the NMIs' results. These deviations and the associated
uncertainties allow indirectly the prediction of the possible
dispersion of results from these NMIs. However, the most
general characteristic of the dispersion of such deviations is
the probability distribution of the difference. This
distribution is a convolution of two distributions, fi(x)
and fj(x), corresponding to the results from these
NMIs: .)()()( ∫ −= dxxfxzfzf ji  It can be useful to

consider a tolerance interval as a characteristic of the
closeness of results and, thus, as a measure of equivalence.
The tolerance interval for the  probability distribution F(x) is
determined as an interval 1 2( , )∆ ∆ , which with given
probability β  encompasses a large fraction p of this

distribution { }2

1

( ) ,P f x dx p β
∆

∆
≥ =∫  where f(x) is the

probability density corresponding to F(x). There is no
principal difficulty in calculating a tolerance interval for a
known probability distribution. For example, Monte Carlo
simulation can be used. This approach to a quantitative
expression of the DoE between two standards can be
extended to the case of the group of standards.

Generally speaking, various interpretations of the
equivalence of the group of standards are possible:
1. Overall equivalence − the equivalence of the whole group
of the standards. The mixture distribution

( ) (1/ ) ( )iF x N F x= ∑  fully characterizes the closeness of

the pooled data from the NMIs. A tolerance interval for the
mixture presents a partial characterization of the dispersion
of the NMIs' results. But the limits of possible deviations of
results from different NMIs are even more valuable from a
practical viewpoint. A tolerance interval for the difference
X – Y of the independent random quantities, each having the
distribution F(x), can be used. So a joint characteristic for
the whole group is suggested.
2. Equivalence of each standard to the group. The
equivalence of any one standard to the group of standards
can be interpreted as the consistency of results obtained in
the NMI with those of the group of NMIs. The DoE can also
be expressed by a tolerance interval for the distribution of
the difference Xi – X of the result from a particular NMI and
that from any NMI in the group, where Xi ∈ Fi(x) and
X ∈ F(x). In this case every standard has its own DoE with
the group of participating standards.

7. CONCLUSIONS

A simplified procedure for evaluating KC data is
suggested. It can be used where

1. There is limited a priori information for quantifying
the covariance matrix of the data. The uncertainties
associated with the random reproducibility effects of the
NMIs are used rather than the (combined) uncertainties
associated with the NMIs' measurements. The approach is
indifferent to the various procedures for uncertainty
evaluation that may be used by the NMIs. It can be useful,
for example, in preliminary comparisons when an
uncertainty budget is not agreed by all NMIs.

2. There is no clear interpretation (understanding) of the
reference value from the physical point of view. The KCRV
is interpreted as a conventional value for the KC, close to a
case where it solely provides an uncertainty-free datum for
presenting the KC results. In the given approach only the
variability of the KRCV due to random effects in the NMIs
is taken into account.

3. Equivalence can be interpreted as a certain level of
reproducibility of results obtained in the particular group of
NMIs. An estimate is obtained, following the approach here,
of the reproducibility of results from the NMIs. For each
NMI it is expressed as a systematic deviation from the
KCRV and the uncertainty of this deviation. Also, another
equivalence characteristic can be proposed using a mixture
distribution. The advantage of a tolerance interval as a
measure of reproducibility of results is emphasized: it
provides directly limits within which with a high probability
a significant number of the measurement results obtained by
the NMIs (or of the deviations between results from
particular NMIs) lie.

A model-based approach based on related concepts has
also been considered in the context of the pair-wise
comparison of NMIs [6].
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