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Abstract − Basic functional model for random signal is 
presented for use in measurement theory. That is H(R) - 
reproducing kernel Hilbert space (RK-space), produced by 
the correlation function R(s, t) of random process x (t).  

RK-space H(R) presents an isomorphic representation of 
the process x(t). So it provides an adequate mathematical 
tool for solving several problems, such as linear filtering, 
extrapolation of random signal, and deterministic signal 
extraction from noise. Besides, the corresponding RK-norms 
are useful in metrology for employing as the measurement 
accuracy characteristics. 

As an illustration of the RK-approach, the pseudo-best 
B-estimates for the deterministic signal extraction from 
noise are considered. 
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1.  INTRODUCTION 
 

Random processes are commonly accepted in 
measurement theory and data processing as the basic models 
of signals. In practice signals are usually considered as 
stationary processes, which allow spectral representations. 
So the most of investigations and estimates are based on the 
spectral models. 

However, in practice there are many important kinds of 
signals, which have no stationary property. So there are no 
classical spectral representations for such signals. The 
problem of non-stationary signal investigation is of great 
importance for the measurement theory in general, and it is 
of prime significance for data processing in measurements.  

Several kinds of generalized or modified spectral 
representations have been proposed for some classes of non-
stationary random processes, but each of them has a 
restricted scope of application. For instance, there is a class 
of harmonizable processes, which have the generalized 
spectral representation. But in this case spectral measure 
proves to be two-dimensional; therefore, Fourier transform 
lack its valuable properties, which are essential for use in 
stationary case. So harmonizable processes are not very 
useful for practice 

Thus time-domain approach seems to be promising for 
measurement theory. Relevant time-domain models are to 
be investigated in order to represent the time-domain 
properties of signals. They form the basis for defining of the 
signal characteristics and for deriving the corresponding 
estimates. 

2. METHODS AND RESULTS  
 

2.1. Basic Model – Functional RK – Space 
In this paper the time-domain approach is developed for 

the representation of non-stationary signals x (t), t ∈[0, T]. 
Functional Hilbert space H(R), based on correlation function 
R(s, t), s, t ∈[0, T], is considered as a basic functional model 
[1]. This is a Hilbert space of functions on the interval  
[0, T] with the reproducing kernel R(s, t), or RK-space. It 
contains all the function of the form Rt = R (⋅, t), t ∈[0, T]. 
The inner product in RK-space H(R) is defined by the 
condition: 

 ( g, Rt )R = g (t). (1) 

Functional space H(R) is very useful for investigation of 
the random process x(t) with correlation function R(s, t). In 
particular, it provides an isomorphic representation of the 
stochastic Hilbert space H(x), generated by random values 
x(t) according mean square norm. The isomorphism [2, 3]: 

 
F: H ( x ) → H ( R ), (2) 

converts the random value x(t) ∈ H(x) into the function Rt = 
R (⋅, t) ∈ H(R). So a given correlation function R(s, t) just 
defines the specific metric in the RK-space H(R):  

 ( Rs, Rt )R  = ( x(s), x(t) ) = R(s, t). (3) 

In measurement practice, there are several tasks 
concerning random signals, which are formulated as linear 
problems in stochastic Hilbert space H(x). In particular, 
these are problems of linear filtering and extrapolation, and 
deterministic function extraction from noise.  

Owing to the isomorphism (2), the RK-space H(R) 
provides a ready mathematical tool for solving the 
mentioned problems in the well-defined functional space. 
The level of this tool efficiency depends on the expediency 
and ease of the major operations in the RK-space.  

So it is important to investigate the properties of RK-
spaces and the operations in these spaces. In particular, the 
properties of RK-spaces are to be compared with the 
spectral representations. 
 

2.2. Comparison of RK-models and  
spectral representations 
For many major classes of processes, which are topical 

for measurement problems, the RK-spaces may be presented 
in direct form.  
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Firstly, for the stationary processes RK-representations 
are directly related with the spectral ones; in some sense, 
these two kinds of models are quite equivalent. In particular, 
if x(t), t ∈(-∞, ∞), is the stationary process with spectral 
density f(λ), then RK-space H(R) consists of Fourier 
transforms of square-integrable functions with the weight f:  

H (R) = {g: g(s) = ∫ exp(-isλ) h (λ) dλ, h∈ L2(f) } (4) 

L2(f) = {h:  ║h║f
2 = ∫ │ h (λ) │2 f(λ)dλ < ∞ }. (5) 

Thus, all the “spectral” properties of stationary processes 
may be simply reformulated in terms of RK-space. 

Apart from the stationary random processes, the direct 
representations are valid for the non-correlated process 
(white noise), Brownian motion, processes with non-
correlated increments, Markovian and N- Markovian 
processes, and some other types of random signals. 

For these types of processes the detailed structure of the 
corresponding RK-spaces has been studied. In particular, 
expressions for scalar products and norms are obtained and 
analyzed. Further, corresponding estimates based on 
experimental data are derived and studied. These estimates 
are the appropriate characteristics of the random signals. 

For some cases RK-spaces have rather simple form. In 
particular, if x1, …, xn  is non-correlated time series (or 
random sample), then RK-space is just l2 -vector space with 
the usual square norm. So the appropriate estimate is just the 
classical sample variance.  

Likewise, Allan variance [4] corresponds to the norm in 
RK-space, produced by the random process with non-
correlated increments, or innovation process. So Allan 
variance may be also called as “innovation variance” [5]. 

RK-representations are also valid for the generalized 
processes. In the case of generalized white noise process, 
Hilbert space H (R) is just the space of the square-integrable 
functions L2 on the interval [0, T]: 

H (R)  = {g:  ║g║2 = ∫ │ g (t) │2 dt < ∞ }. (6) 

Properties of RK-representations clearly demonstrate the 
advantages of these models, so they are worth wider using in 
practice. RK-representations were introduced in 1960s [2, 
3], and they were widely used in the theory of random 
processes [6]. An important advantage of RK-representation 
over the spectral one is that the former is applicable for both 
stationary and non-stationary processes. RK-spaces are 
extremely simple and useful for the white noise, Brownian 
motion and processes like those.  

But there are naturally some imperfections in the RK-
spaces. They are clearly seen in comparison with spectral 
representation, which have rather general and unified form. 
Besides, all the spectral operations are quite determined by 
the well-known properties of the Fourier transform.  

On the other hand, RK-spaces are too individual and 
specific. They are so closely linked with the particular 
kernels R(s, t), that the intrinsic metrics in RK-spaces 
usually have rather special form. In particular, the basic 
functions Rt = R (⋅, t) may be of complicated form.  

So, RK-spaces have the merits, such as individual 
character and direct presentation of the process values. But it 
turns into disadvantages, as it tends to the complicated 

norms and unusual metrics in RK-spaces. This is the reason 
that the practical employment of RK-models is still limited.   

 
2.3.  Ordering of RK-spaces 
The functional RK-model has an important property that 

it is possible to establish a partial order of the models. 
Firstly, the notions of subordinated and dominated kernels 
are introduced in the following way. The kernel R2(s, t) 
dominates R1(s, t) (and R1  is subordinated to R2):  R1  ≤ R2 , 
if the difference  

R0 (s, t) = R2 (s, t) - R1(s, t) (7) 

is the positively defined kernel [1, 7]. 
As applied to the corresponding random processes, it 

means that the process x1(t) with the correlation function 
R1(s, t) may be obtained as a projection of the process x2(t) 
with the correlation function R2(s, t) onto a certain subspace 
H1  in the space of random values.  

The ordering relation for the kernels generates the 
corresponding ordering relation for the RK-spaces. If the 
kernel R2(s, t) dominates R1(s, t), then RK-space H(R1) is 
the subspace of the RK-space H(R2). In this case H(R1) can 
be also called as subordinated to the space H(R2). 

There is a practically important case, then the actual 
correlation function of the process R1(s, t) is not known, but 
it is possible to construct or define the kernel R2(s, t), which 
dominates R1(s, t). Thus all the principal problems 
mentioned above, such as linear filtering, extrapolation, and 
the signal extraction from noise, may be solved using the 
dominating RK-space H(R2), instead of the actual RK-space 
H(R1).  

Therefore, it is practically important to reveal a 
relatively limited set of such “basic” processes, that the 
corresponding RK-spaces would be easy to describe and 
handle. It is also preferable, that these RK-spaces would be 
rather extensive; in this case they would dominate a wide 
range of RK-spaces, corresponding to the actual signals. So 
a set of RK-models should be established with the desired 
propertied stated. 

The set of basic RK-model should certainly include 
stationary processes and several classes of non-stationary 
ones, such as non-correlated process (or white noise); 
processes with non-correlated increments; Markovian and 
N-Markovian processes. It is necessary to investigate the 
detailed structure of the corresponding RK-spaces. 

In particular, if x1, …, xn  is time series with non-
correlated increments, the corresponding RK-space is the 
vector space with norm 

║ x ║2 = | x0 |2 + Σ | xk+1 - xk   |2 (8) 

For the Brownian motion with the correlation function  

B (s, t) = σ0
2 + σ2 min (s, t),  (9) 

RK-space H (R) is just the space of the absolutely 
continuous functions with the square-integrable derivatives: 

H(B) = { f :   ∫ | f’ (u) | 2 du < ∞ }. (10) 

Likewise, the general process with non-correlated 
increments has the correlation function of the form 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC7 



B (s, t) = σ0
2 + σ2  µ (0, min (s, t)), 0<s, t <T, (11) 

with µ (0, s) being a certain measure of the interval [0, T]. 
Then RK-space H (R) is just the space of the functions, 
which are absolutely continuous relatively measure µ, with 
the square-integrable derivatives: 

H(B)=L1
2{µ}= {f: ∫(df(u)/dµ(u)) 2 dµ(u) < ∞ } (12) 

 
So the scalar product in this RK-space is the following: 

(f1, f2 )B =∫(df1 (u)/dµ(u)) (df2(u))/dµ(u)) dµ(u)  (13) 

 
In the case of Markovian process the correlation function 

is represented in the form: 

R (s, t) = ψ (s) ϕ( t), 0<s < t <T, (14) 

where ψ (s) and ϕ( t) are continuous functions, 
and the ratio u(t)=ψ (t)/ϕ( t) is an increasing function. 
Then RK-space consists of the functions, which have the 
following representations: 

f(t)= ϕ(t) g(t),   ∫ (g’(t))2 / u’(t) dt < ∞  (15) 

So the scalar product in this RK-space is the following: 

(f1, f2 )R = ∫ (g1’(t) g2 ’(t) / u’(t) dt . (16) 

 
As applied to these RK-models, the corresponding 

classes of signals are formed with RK-spaces subordinated 
to these models. It is important, that the necessary and 
sufficient conditions of subordination are also formulated in 
terms of RK-spaces.  

The RK-models of Brownian motion or non-correlated 
increments process are extremely significant. In particular, 
they produce the RK-norms, which are closely related with 
Allan variance [4]. The latter is an important characteristic 
of data scatter, which is useful both for many kinds of 
measurements [8].  

It is to be noted, that the classes of random signal, 
formed as subordinated to basic RK-models, do not produce 
a proper classification system. The classes are not disjoint, 
but they are complementary in some sense. So there are 
many processes, which are simultaneously subordinated to 
several RK-models.  

The RK-approach to the signal representation may be 
called “coordinate free”, but by the introduction of suitable 
parametric systems, it can be done parametric.  

It may be also called “stationary free”. Indeed, the 
stationary case is just one of the basic RK-models, but the 
class of subordinated processes includes both stationary and 
non-stationary ones. On the other hand, any basic RK-model 
mentioned above dominates some stationary processes. So 
this approach is independent of stationary property, and it 
provides an essential linking between stationary and non-
stationary cases. 
 

2.4. Signal extraction from noise 
As an illustration of the RK-approach, the problem of 

extraction of deterministic signal from noise is considered.  

It is very important for measurement practice; in particular, 
it may be used for estimation of the systematic errors of the 
measuring device.  

The signal under observation is supposed to be a sum of 
given functions f1 , …, f m with unknown weights  a1, ..., am,: 

f(t) = Σ ai fi (t)   (17) 

It is observed in the discrete points within the interval [0, T], 
but it is corrupted by random noise x(t): 

yk = y (tk) = Σ ai fi (tk) + x (tk),  0 ≤ tk ≤ T . (18) 

Correlation function R(s, t) of the noise x (t) is usually 
unknown. But often it is possible to find a correlation 
function В(s, t), that dominates R(s, t).  

In this case one cannot construct the optimal linear 
estimates of parameters a1, ..., am; but it is possible to find 
the pseudo-best B-estimates, assuming correlation function 
В(s, t) instead of R(s, t) [7]. These estimates are constructed 
like the classic least squares estimates, using RK-space H(B) 
norm (instead the sum of squares). So the system of 
equations for finding parameters a1, ..., am, is just as follows:  

Σ ( fi , fj )B aj  = ( y, fi )B , i = 1...m. (19) 

B-estimates are the direct generalization of the classic 
least squares estimates; the latter correspond to the white 
noise RK-space H(B). Apart from this case, B-estimates 
formed according to Brownian motion, and Markov 
processes are of practical interest. 

Certainly, B-estimates are not optimal ones. For the 
practical application of B-estimates it is necessary to study 
the basic properties of these estimates, in particular, obtain 
the conditions for the following: 

1) statistical consistency of B-estimates, when they 
converge to the true values of parameters; 

2) asymptotical efficiency of B-estimates, when they 
are almost as accurate as the optimal estimates; 

3) sufficient relative efficiency of B-estimates, when 
there is not so much loss of accuracy caused by 
using B-estimates instead of the optimal one. 

All the conditions and estimates mentioned above can be 
formulated in terms of the corresponding RK-spaces. They 
depend on the interrelations of the spaces H(B) and H(R), 
and also of the properties of the functions f1 , …, f m. These 
conditions may be given in the explicit form for the cases of 
Brownian motion, and Markov kernel B. 

The general condition of consistency is equivalent that 
RK-space H(R) is just a subspace of H(B), or the kernel R is 
subordinated to B. 

In particular, it can be directly formulated for the case of 
Brownian motion kernel B.  

a) Stationary kernel with spectral density f(λ) is 
subordinated to Brownian motion, if and only if the 
function { λ2 f(λ) } is bounded. 
b) Stationary increment kernel with spectral density 

f(λ) is subordinated to Brownian motion, if and only 
if the spectral function  f(λ)  is bounded. 

c) Markovian correlation function of the form (14) is 
subordinated to Brownian motion, if the functions 
answer requirements: 
∫ (ψ’(t))2 / u(t) dt < ∞ 
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(ψ(t))2  u’(t)  is bounded. 
The study of B-estimates shows that B-estimates are 

rather simple and convenient. They also give an acceptable 
accuracy in practice. 

 
3. CONCLUSIONS 

 
The time–domain approach and functional RK-models, 

studied in this report, forms a methodological basis for 
development of the signal processing methods, which are 
useful for metrological practice.  

RK- approach extends the functional representations for 
non-stationary processes. It provides the opportunities for 
solving problems of linear filtering, and extrapolation of 
non-stationary signals. This approach also gives some new 
methods for the statistical signal processing, such as pseudo-
best B-estimates. Besides, this approach is useful for 
introducing the measurement accuracy characteristics  

RK-approach also gives a new insight into the 
relationship between the well-known statistical models with 
corresponding characteristics, and more general non-
stationary models with other kinds of characteristics. 
 

REFERENCES 
 

[1] Aronszajn N. Theory of reproducing kernels. – Trans. Amer. 
Math. Soc., 68 (3), 1950. 

[2] Hajek J. On statistical problems in stochastic processes. – 
Czechoslovakian Mathematical Journal, 12 (87), 1962. 

[3]  Parzen E. A new approach to the synthesis of optimal 
smoothing and prediction systems.– In “Mathematical 
optimization techniques”, Univ. California Press, 1963. 

[4] Allan D.W., Ashby N., Hodge C.C. The Science of 
Timekeeping. – Application Note 1289, Hewlett-Packard 
Company, 1997. 

[5]   Siraya T.N. Comparison of Uncertainty Estimates: Allan 
Variance and Sample Variance. – In: “Proceedings of 3rd 
International Conference on Measurement “Measurement-
2001”, Bratislava, SAV, 2001. 

[6]  Kallianpur G. The role of Reproducing kernels Hilbert space 
in the study of Gaussian processes. – In “Advances in 
probability and related topics”, N. Y., 1971. 

[7]   Tempelman A. A. On linear regression estimates. – In “2nd 
International Symposium on information theory” – 
Budapest, 1973.  

[8]  Witt T. J. Testing for correlations in measurements – In 
“Advanced Mathematical and Computational Tools in 
Metrology,” IV, 2000.  

 
 
 
 
 

 
 
 
Author: D. Sc. Tatiana N. Siraya, Leading researcher,  
Central Scientific Research Institute “Elektropribor”,  
197046, St.-Petersburg, Russia.  
Fax: 7 (812) 232 33 76. E-mail: elprib@online.ru 
 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC7 


	P168: 
	Numb: 
	Numbx: 
	C: 1210



	P169: 
	Numb: 
	Numbx: 
	C: 1211



	P170: 
	Numb: 
	Numbx: 
	C: 1212



	P171: 
	Numb: 
	Numbx: 
	C: 1213





