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Abstract − The results of research of evaluation error of 
the coverage factor with approximate method of effective 
number degrees of freedom in indirect measurements have 
been presented in the paper. Comparison of the results 
obtained with the known evaluation of these errors in direct 
measurements enabled to determine the change tendency of 
the errors of coverage factor evaluation, when the number of 
components of standard uncertainties grows. The knowledge 
of coverage factor characteristics for the convolution of 
three selected probability distributions was used for the 
research. 

 
Keywords uncertainty, coverage factor 
 

1.  INTRODUCTION 
 
Each evaluation of the expanded uncertainty requires the 

choice of an approximate evaluation method of the coverage 
factor. In the methods suggested by the international 
document [1] it is necessary to decide whether the evaluated 
factor shall approach the factor for a normal distribution or 
for Student's distribution. Usually the sample size is the 
decisive factor in the choice. However, how the number of 
standard component uncertainties influences the choice of 
the evaluation method is unknown. When deciding about the 
method of expanded uncertainty estimation, one should be 
aware of the effects of choosing a particular method from 
the viewpoint of its accuracy. The basis for estimating the 
accuracy of applied approximate methods of the estimation 
of expanded uncertainty is the assumption on the necessity 
the assessment methods, which could be regarded as exact 
estimation. 

An essentially appropriate concept was adopted, which is 
taken into consideration, that the method based on the 
command of the convolution of component distributions 
may be regarded as an exact method. Due to complexity and 
time-consuming character of computing the convolution of 
many distributions of components, the results of such 
computing are, in general, hardly ever published. Therefore, 
approximate methods are generally accepted and 
recommended. 

There are the results of publications [2], [3], [4], [5], 
concerning the analysis of accuracy of approximate methods 
of expanded uncertainty estimation for simple direct 
measurement, when there are only two component standard 
uncertainties.  

In the present paper the analysis of accuracy of 
estimating the coverage factor in indirect measurements was 
described. 

Description of the convolution of two Student�s 
distributions and one rectangular distributions S*S*R is 
presented hereafter as well as the calculation results of the 
selected values of the coverage factor for the convolution. 
Furthermore, the factor characteristics are presented and 
compared to the characteristics of the coverage factor for the 
distribution, which is a convolution of one Student�s 
distribution and one rectangular distribution S*R and to the 
characteristics of the factor ( )αNk  for a normal distribution. 

The results are presented for one selected probability 
value α = 0.95 and for small samples. 

 
2.  CHARACTERISTICS OF THE COVERAGE 

FACTORS 
 
A measuring event, which utilizes a convolution of two 

Student distributions and one rectangular distribution is an 
example of indirect measurement carried out by means of 
two measuring devices, which, in case of repeated 
measurements, show a scatter of results, a type-B standard 
uncertainty of one of the devices can be neglected, and the 
number of measurements is small (n<30). Therefore, three 
standard uncertainties are analyzed: type-B standard 
uncertainty, which reflects a standard deviation of 
rectangular distribution and two type-A standard 
uncertainties, which reflect a standard deviation of Student 
distribution. 

On the basis of the developed analytical description of 
coverage factors in case of the analyzed convolutions one is 
able to identify all parameters, which function are the 
factors. One is able to demonstrate that a coverage factor for 
the convolution S*S*R, from now on referred to as factor 

( )αRSSk
21

 is a function of 5 variables [6]: probability 

α , number of degrees of freedom 111 −= nm  and 
122 −= nm  first and second Student�s distributions and the 

ratio of standard uncertainties Sη  and η  (1): 
 
 ( ) ( )ηηαα ,,,, 2121 SRSS mmfk =  (1) 
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uncertainty of type A to standard uncertainty of type B. 
Calculations were executed for one probability value 

α = 0.95, for small values m and for the value series 
η, ranging from 0.1 to 10. 

Matlab program was used for the calculations and the 
following were assumed: 

- approximation accuracy of the probability range 
α  over the variable k,  ε =1e-4, 
- the number of integration ranges in the Simpson�s 
method of integration 300 
- multiple j =20 
Computational results are presented in Table 1. 
 
TABLE I. Values of the coverage factor ( )αRSSk

21
 

m1=3 m1=9 1/η η m2=3 m2=9 
10 
5 
4 
3 
2 
1 

 
 
 
 
 

1 
2 
3 
4 
5 

10 

1,6754 
1,7650 
1,8211 
1,9184 
2,1313 
2,6195 
3,0109 
3,1297 
3,1781 
3,1988 
3,2324 

1,6561 
1,7023 
1,7313 
1,7797 
1,8761 
2,0617 
2,1844 
2,2175 
2,2306 
2,2375 
2,2453 

 
Characteristics of the coverage factor are presented in 

the function of the ratio of standard uncertainties η = uA/uB 
and its converse. 

Characteristics of the coverage factor ( )αRSSk
21

 are 
compared to the characteristics of the coverage factor 

( )αSRk  for the convolution S*R and to the value of the 
coverage factor ( )95.0Nk  for a normal distribution. 

Fig.1 shows the characteristics of the coverage factor 
( )95.0

21 RSSk  for 321 == mm , 921 == mm , 1=Sη  in the 
function of the ratio of standard uncertainties BA uu /=η  
and its converse. 

Broken line shows characteristics of the coverage factor 
( )95.0SRk  for the convolution S*R, for 3=m  and 9=m , 

and the coverage factor ( )95.0Nk  for a normal distribution. 
In this situation both samples have the same number of 

degrees of freedom, and  none of the component standard 
uncertainties of type A is a domineering one. 

In accordance with the central limit theorem, the 
characteristics of the coverage factor ( )95.0

21 RSSk  and 

( )95.0SRk  clearly trend to approach the value of the factor 
( )95.0Nk  as the sample size increases. The phenomenon is 

observed in the domain where BA uu > , further called 
domain A. 
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Fig. 1 Characteristics of the coverage factor ( )95.0
21 RSSk , 

( )95.0Nk  and ( )95.0SRk  in the function η  and its converse 
 
Whereas in the domain where AB uu > , further called 

domain B, the influence of the sample sizes is much smaller 
and fades as the values of the ratio AB uu >  increases. 

 
3. THE METHOD OF EFFECTIVE NUMBER  

DEGREES OF FREEDOM 
 
Document [1] suggests for a measuring event with 

a small number of tests a method according to which the 
coverage factor ( )αk  assumes the values of standardized 
variable of Student distribution ( )α

emk , read from the table 
of this distribution for the effective number degrees of 
freedom em . 

According to Welch-Satterthwaite�a Formula [3], if the 
combined standard uncertainty is a root of a sum of two or 
more variances estimated on the basis of results of not 
numerous test with unknown standard deviation σ , the 
unknown distribution of the required standardized variable 
can be approximated by means of a Student distribution for 
the effective number degrees of freedom em . 

In the considered case of indirect measurement the 
effective number of degrees of freedom is described by 
means of relationship (2) resulting from the general Welch-
Satterthwaite�a formula: 
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where: 
- cu  is a standard combined uncertainty of value 
Y measured indirectly and computed according to the 
uncertainty propagation law 
- 1−= jA nm

j
  is the number of degrees of freedom of the 

j -th measurement 
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- 
jBm  is the number of degrees of type B freedom and is 

computed on the basis of reliability of component standard 
uncertainty of type B. 

In a situation when type-B standard uncertainty is 
estimated on the basis of known rectangular distribution 
which borders are defined by the limiting error of measuring 
devices, one can assume that this uncertainty is well known. 
Therefore, for the following analysis one can assume that 
the relative uncertainty of type B values equal to 0.1 [2], 
which reflects the number of degrees of freedom Bm =50. 
Assuming that all partial derivatives are equal to one, and 
after all appropriate transformations for the analyzed 
situation one obtains (3): 
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This form of relationship describing em  permits to 

present the characteristics of coverage factor of Student 
distribution for the effective number of degrees of freedom 

( )αSSRme
k  in function η  for various values m , in order to 
compare it with the characteristics of coverage factor for the 
analyzed convolution ( )αRSSk

21
. 

Fig. 2 presents the characteristics of coverage factor 
( )95.0SSRme

k , ( )95.0
21 RSSk  for 321 == mm  as well as for 

921 == mm , 95.0=α  and Sη =1. 
 

1,5

2

2,5

3

3,5

10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10

k(a)

uA/uBuB/uA

m=3

m=9

a=0,95

kmeSSR(0,95)

kS1S2R(0,95)

kN(0,95)

 
Fig. 2 Characteristics of the coverage factor ( )95.0SSRme

k , 

( )95.0
21 RSSk   in the function η  and its converse 

 
The characteristic feature of the computed factor 

( )αSSRme
k  is such that in domain A its values differ 

considerably from the value of factor ( )αRSSk
21

, which are 
exact values. With the increasing number of degrees of 
freedom m, the differences diminish.  

In domain B the factor assumes constant values 
independent from the number of degrees of freedom m and 

the values are close to the values of the factor ( )95.0Nk  for 
a normal distribution. 

On the presumption, that knowledge of convolution of 
component distributions permits to estimate expanded 
uncertainty with strict accuracy it is assumed, that error, of 
which absolute values is described by relationship below 
will be measure of discrepancy between approximate and 
exact method: 
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where u  - it is expanded uncertainty evaluated by means 

of approximate method 
 
 ( ) cuku ⋅= α  (5) 
 

eu  - it is expanded uncertainty estimated �exactly�, on 
the basis of knowledge of distribution, which in the 
measuring event is the convolution of two Student 
distributions and one rectangular distribution. The coverage 
factor ( )αRSSk

21
 could be regarded as exact value: 

 
 ( ) cRSSe uku ⋅= α

21
 (6) 

 
In the most of considered measuring events error 

described by the dependence (4), will be error the estimate 
of unknown the coverage factor value ( )αk , which assumes 
form [7]: 
 
 ( ) ( )
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According to the assumption that the value of coverage 

factor for the analysed convolution of component  
distributions may be regarded as an exact value, the absolute 
value of estimation error δ  by means of this approximate 
method is defined as (8): 
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Fig. 3 presents the absolute error values δ  of factor 

estimations ( )95.0SSRme
k  in the function η  for various 

values of m. 
 

4. CONCLUSIONS 
 
The influence of the sample size is the domineering 

influence on the error δ  value in domain A. In domain 
B the influence of a sample size is slight and fades as the 
values AB uu /  increase.  
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Fig. 3 Absolute error values δ  of coverage factor estimations 

( )95.0SSRme
k  in the function η  and its converse 

 
According to Fig. 3 there is a limitation of applying the 

method of effective number of degrees of freedom for not 
numerous population � m=3 in a situation when we are in 
a domain type A. With the increasing m, the value of error 
decreases considerably. The results of research, which are 
presented in the present paper indicate only the trend of 
changes of errors of coverage factor estimation, according to 
the recommended by the international document [1] 
approximated method of assessment. In spite of the fact that 
this is the method recommended by the international 
document for estimating the coverage factor in indirect 
measurements, when short series are available, this method 
has limitations from the viewpoint of its accuracy. 
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