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Abstract − In this paper the problem how to estimate the 

time-of-flight of a received acoustic tone burst is addressed. 
In indoor applications, reflections cause interference 
patterns that are hardly predictable and can lead to large 
estimation errors. A generalisation of the well-known 
matched filter based on a non-stationary autocovariance 
model of the reflections allows us to develop a new 
estimator. Experiments show that the application of the new 
estimator can reduce these errors by about a factor four.  
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1. INTRODUCCION 
 
A straightforward approach to measure the distance 

between an acoustic transmitter and a receiver is based on 
the time-of-flight (ToF) of an acoustic tone burst. The 
approach is applied mainly in position measurement systems 
and sonar systems [1]. The determination of the moment of 
the arrival of a tone burst is difficult. Often, the signal-to-
noise ratio is small, and the amplitude of the wave is 
unknown. In addition, due to the dynamics of the two 
transducers (a transmitter and a receiver) the received 
waveform starts slowly. The large rise time of the received 
waveform makes the moment of arrival indeterminate. 

The most direct method to measure the moment of 
arrival is to determine when the received waveform exceeds 
a specified threshold value [2], [3]. Since the moment of 
threshold crossing depends both on the threshold and the 
intensity of the received waveform, a better method is to 
apply a threshold that is adapted to the intensity of the 
waveform (measured, for instance, by its peak value). 
Another approach is to apply curve fitting [2], [4]. On 
adoption of an error criterion between the observed 
waveform and a parametric model, the problem is to find the 
parameters that minimise the criterion. Useful criterions are 
the L1 and the L2-norm [5]. The most advanced method is to 
set up the problem within the framework of estimation 
theory. In its simplest form such an approach leads to cross 
correlation of the received signal with a template signal, i.e. 
matched filtering, and the determination of the moment of 
maximal correlation [2], [3], [4], [6], [7], [8] and [9].  

The success of these techniques depends on whether the 
shape of the observed waveform is predictable or not. In 
open air, the shape of the waveform mainly depends on the 

characteristics of the tone burst, the transmitter, and the 
receiver. Hence, under these conditions the shape of the 
observed waveform is predictable and the techniques work 
fine. This paper addresses to the problem where there are 
reflective objects near the transmitter and receiver or near 
the path between these two. The echoes from these objects 
may interfere with the desired response. As a result, the 
observed waveform will be hardly predictable in a 
deterministic sense.  

As an example, consider the waveforms in Fig. 1. The 
observed waveform on top is acquired with a transmitter and 
a receiver separated by a distance of 3.0 m in face-to-face 
directions. Reflective objects in the vicinity of the 
measurement set-up cause extra reflections that interfere 
with the direct response. The interference pattern is hardly 
predictable in a deterministic sense because of the many 
unknown factors. The result of the (supposed) optimal 
matched filter/correlator is shown in the middle. Due to the 
interference the response achieves its maximum about 0.8 
ms after the arrival of the direct response. In this example, 
the interference is severe, and consequently the error of the 

observed waveform
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Fig. 1 Observed waveform, the output of the matched filter, and 

the output of the estimator based on the covariance model. 
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correlator is extremely large. In fact, the ad hoc methods 
designed without any optimality criterion, e.g. the threshold 
crossing method, would perform better than the ‘optimal’ 
correlator. The reason for this apparent discrepancy is that 
the mathematical model underlying the correlator does not 
apply in this case. The correlator has been designed with 
ignorance of possible interferences.  

The paper introduces a new ToF estimator that is more 
robust against the presence of unwanted reflections. The 
base of this estimator is alike the one of the correlator, but it 
is extended with a model that describes the rise and fall of 
arriving echoes. The model is presented in [10]. The paper 
outline is as follows. Section 2 formalises the problem by 
the introduction of the mathematical framework. As such it 
provides the model on which the estimator will be built. 
Section 3 presents the actual development of the estimator. 
Experiments conducted to analyse and to evaluate the 
estimator are reported in Section 4. The paper finalises with 
a conclusion in section 5. 

 
2. PROBLEM ANALYSIS 

 
2.1 Statement of the problem 
Given a waveform: 
 ( )( ) ( ) ( ) (w t a h t r t n tτ τ= − + − + )      (1) 
with a the amplitude of the observed direct response, 
the direct response of the acoustic measurement system 

to a tone burst but with a nominal energy (that is: 
( )h t

( ) 1h t = ), 
τ  the time-of-flight, ( )r t  the echoes due to reflections from 
nearby objects and ( )n t  white measurement noise. 
Underscored variables are random variables, and thus 
unknown.  

The observed waveform z  is a sampled 
version of , i.e.  where  is the sampling 
period, and 

[ 0
T

Kz z −= L

( )k∆ ∆
]1

( )w t iz w=
K  is the number of samples. Hence, K∆  is the 

registration period. The problem is to estimate the time-of-
flight τ  based on the measurements . z

 
2.2 The conventional solution: matched filtering and 

correlation 
The conventional solution to this problem is achieved by 

neglecting the reflections. In that case the measurements are 
modelled as ( ) (kz a h k n k )τ= ∆ − +

kz
∆ and the elements of the 

expectation of  are ( ) ( )kz a h kτ τ= ∆ −
2
n

. Assuming white 
Gaussian noise with variance σ  the vector  has a 
Gaussian conditional probability density with covariance 
matrix 

z

2
nσ=C I .  

(τhUpon introduction of a vector )  with elements 
( ) ( )kh h kτ τ= ∆ −  the conditional probability density of  is: z

( ) ( )22

1 1( | ) exp ( ) ( )
2(2 )

T

K
nn

p aτ
σπσ


= − − −


z z h  (2) aτ z h τ





The term  does not depend on z z τ  and can be 
ignored. Also, the second term can be ignored as a change of 

τ  only causes a shift of the direct response. Hence, the 
maximum likelihood estimate implies finding τ  that 
maximizes ( )Ta τz h

( )h t
. A further simplification occurs if the 

extent of  is limited to, say N∆  with N K<< . Then, 
( )Ta τz h  is obtained by cross correlating  by kz ( )a h k τ∆ + : 

1

0

(
N

n

y aτ
−

=

= ∑( )

τ ( )y τ

a

( )ta r

( )r t

ˆ ( ,r( ,rr ) E
def

)
s

) ( )R up p t h u ds+
∞

=−∞
∫

( ,r tσ

p

( , )trσ p

( )r k τ∆ −
( )τC τ

, ( )n m τ τ=

C

,C a

a

)
( )p a

τ

) E (a h nσ τ= ∆ −

2
aσ

B ( )T τh
a

Maximization of this expression yields the maximum 
likelihood estimate for τ . In order to do so, we only need to 
minimize the 2L -norm of ( )a τ−z h : 

T( ) ( ) 2( ) ( ) ( ) ( ) 2 ( )T T Ta a a aτ τ τ τ− − = + −z h z h z z h h z h
T

τ  (3) 

         (4) ) nh n∆ − zτ

The value of  which maximizes  is the best 
estimate. The operator expressed by (4) is called a matched 
filter or a correlator. Note that apart from its sign, the 
amplitude  does not affect the outcome of the estimate. 
Hence, the fact that a  is usually unknown doesn't matter 
much. 

 
2.3 Covariance model for the waveform with reflections 
We return to the case of having reflections . In a 

previous paper [10] we discussed a covariance model that 
provides a statistical description of the reflections. We 
assume for a moment that 0τ = . The model postulated in 
[10] is that  is a zero mean, Gaussian random process 
with a non-stationary autocovariance: 

[ ]( ) ( ) ( , ) (rt u r t r u t h s sσ σ= ≈ +  

               (5) 
Here, )p  is a function that modulates the standard 

deviation of the reflections so as to describe the rise and fall 
of the echoes arriving at the receiver. The vector  contains 
the parameters that describe this process. The numerical 
value of p  is obtained by fitting  to the standard 
deviation estimated from a number of observed waveforms.  

For arbitrary τ , the reflections are shifted 
correspondingly. The sampled version of the reflections is 

. With that, the elements of the covariance matrix 
 of these terms, conditioned on , become: 

 ( , )rrC R n mτ∆ − ∆ −        (6) 
If the registration period is sufficiently large, the 

determinant ( )τ  does not depend on τ . This is so, 
because a change of τ  merely causes a shift of elements in 
the matrix in the direction along the diagonal.  

Besides ( )n m τ , statistics of the amplitude should be 
found to determine the probabilistic model of the full 
waveform. The observed waveform expressed in (1) 
involves two unknown factors,  and τ . The prior 
probability density of the latter is not important because the 
maximum likelihood estimator that we will apply does not 
require it. However, the first factor a  is just a nuisance 
parameter. We deal with it by regarding a  as a random 
variable with its own density . We conveniently 
assume  to be a zero mean, Gaussian density. With 
that, all information in 

(p a

(t )a h τ−  about  is integrated in a 
conditional covariance matrix ( )τB  with elements: 

2 2
, ( ( ) ( ) ) ( )n mB a h n h m h mτ τ τ τ ∆ − ∆ − = ∆ − 

 (7) 
where  is the variance of the amplitude a . The matrix 

( )τ  can be written as 2( ) ( )aτ σ τ=B h . The advantage 
of modelling  as a zero mean Gaussian random variable is 
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that the dependence of τ  to  is now captured in a concise 
model, i.e. a single covariance matrix 

z
( )τD :  

( ( )T

σ

)a n

2 2
a n

τ τ

C

σ+ I

+

C

τ
11 Tτ τ−

z z1 e
(

=
D

D
K

τ
τD

z
)

(τ

) ( )k k τ=

1
)

( )

T

λ τ
v v

Λ

1 1

0 0

TK K

k k

− −

= =

−z( )z (
( )

τ τ∑

K

 2

( ) ( ) ( )

( ) ( )

τ τ τ σ
2σ τ

= +

= +

D B I

h h
     (8) 

In the following section this matrix will be used to derive 
the estimator. 

 
3. MAXIMUM LIKELIHOOD ESTIMATION OF THE 

TIME-OF-FLIGHT 
 

With the signal modelled as a zero mean, Gaussian 
random vector with the covariance matrix given in (8), the 
likelihood function for  becomes: 

 ( | ) xp ( )
2(2 ) )K

p
π τ

−
 

   (9) 
D z

The maximization of this probability with respect to τ  
yields the maximum likelihood estimate of τ . 
Unfortunately, this solution as such is not practical because 
it involves the inversion of the matrix ( )τ . The size of 

( )τD  is K K×  where  is the number of samples of the 
registration (which can easily be in the order of 10 ). Thus, 
an economical solution is the main topic of the succeeding 
sections. 

4

 
3.1 Principal components 
If the registration period is sufficiently large, the 

determinant ( )τD  will not depend on . With that, we can 
safely ignore the factor 0.5( ) − . What remains is the 
maximization of the argument of the exponential: 

 1( ) ( )Tτ τ−Λ = −z D  (10) m N
The functional (τΛ  is a sufficient statistic. It reduces 

the measurement vector z  to a single variable while 
retaining all information about τ  that is captured in . For 
obvious reasons, 

z
)Λ is called the "log-likelihood 

function". 
The first computational savings can be achieved if we 

apply a principal component analysis to ( )τD . The matrix 
can be decomposed as 

0k

1

( ) ( )
K

(T
kτ λ τ τ

−

∑D
=

. Here, v v kλ  
and  are eigenvalues and eigenvectors of , that is kv

k

D
kλ=Dv v  with k =v . The inverse matrix takes the form: 

(τ
k

 
1

1

0

( )( )
K

k k

k k

ττ
−

−

=

= ∑D  (11) J

Using (11) the expression ( )τ becomes: 

 ( )2
( ))( )

( )

T
kT k k

k k

τ
τ

λ τ λ τ
 

Λ = − = 
 

∑
z vv v  (12) 

The computational savings are obtained by ignorance of 
all terms in (12) that do not capture much information about 
the true value of τ . If we suppose that the kλ 's and 's are 
arranged according to their importance with respect to the 
estimation, and that above some value of k , say 

kv

J , the 
importance is negligible then the number of terms in (12) is 
reduced from K  to J . In practice, a speed up with a factor 

 is feasible because 310  (on the order of 10 ) is replaced 
by 

4

J  that might be on the order of 10. 
 
 

3.2 Selection of good components 
The problem addressed in this section is how to order the 

eigenvectors in (12) such that the most useful components 
come first, and thus will be selected. For that purpose, we 
rewrite (12) as follows: 

 ( ) ( ) ( )2 221 1

2
0 0

( ) ( )
( )

( )

T TK K
k n k k

k kk n n

λ σ τ τ
τ

λ τ σ σ

− −

= =

−
Λ = −∑ ∑

z v z v
2  (13) 

However, since the set of eigenvectors ( )k τv  forms an 
orthonormal basis in the space of , the second term is just z

22
nσz . It does not depend on τ . The maximum 

likelihood estimate for τ  appears to be equivalent to the one 
that maximizes: 

  with (
1 2

0

( ) ( )
K

T
k k

k

γ τ τ
−

=
∑ z v )

2

2

( )( )
( )

k
k

k n

nλ τ σγ τ
λ τ σ

−
=  (14) 

Each factor ( )kγ τ  can be regarded as a weight for the 
corresponding term ( )T

k τz v . Since 2( )k nλ τ σ≥ , and thus 
( ) 0kγ τ ≥ , this weight is a good criterion to measure the 

importance of an eigenvector. Hence, a plot of ( )kγ τ  versus 
 is helpful to find a reasonable value of k J . Hopefully, 
( )kγ τ  is large for the first few k , and then drops down 

rapidly to zero. 
 
3.3 The computational structure of the estimator 
When (14) is implemented a practical problem arises. 

The eigenvectors and eigenvalues must be calculated for 
varying values of τ . Since the dimension of the 's is very 
large, this is not computationally feasible. We solve this 
problem by limiting the inner products 

kv

)(T
k τz v
m

 arising in 
(14) to a window of . The window starts at  and ends at z

1+ − . Thus, it comprises  samples. We stack these 
samples into a vector . Each value of m  corresponds 
to a hypothesized value 

N

m
( )mx

τ = ∆ . Instead of applying 
operation (14) for varying τ , we fix the value of τ  to zero 
and replace  by the moving window .  z

1J −
( )mx

( 2

0

( ) (0) ( ) (0)T
k k

k

y m mγ
=

= ∑ x v )  (15) 

If  is the index that maximizes m̂ ( )y m , then the 
estimate for τ  is found as .  m̂∆

The operation  is just a FIR filter. The 
computational structure (Fig. 2) consists of a parallel bank 
of 

( ) (0)T
kmx v

 filters/correlators, one for each eigenvector . 
The results of the filters are squared, multiplied by weight 
factors 

(0)kv

kγ , and then accumulated to yield the signal 

  (16) (
1 2

0

( ) (0) ( ) (0)
J

T
k k

k

y m mγ
−

=

= ∑ x v )
Then the estimate for τ  is found as  if  is the 

index that maximizes . 
m̂∆ m̂

(y m)
The procedure to get the eigenvectors and weight factors 

is as follows: First, calculate the N N×  matrix  
according to (8) using (5) and (6). Next, calculate the 
normalized eigenvectors and eigenvalues of D . Then, 
sort the eigenvectors and eigenvalues in descending order of 

(0)D

(0)

kγ . After that, select the first J  eigenvalues and 
eigenvectors. The first J  eigenvectors are the kernels of the 
filters. Ideally, the selection of J  is such that 0kγ ≈  for 

. k > J
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4.  EXPERIMENTS 
 

In this section, the experiments that have been conducted 
to validate the proposed estimation method are introduced. 
150 measurements were performed under different 
conditions: room, location, height above the floor, distance 
between transducers, etc. These measurements have been 
used as a benchmark to compare the performance of the new 
estimator with the one of the matched filter. Details of the 
experimental set-up are given in section 4.1. Section 4.2 
presents the results and section 4.3 finalises with a 
discussion. 

 
4.1 Experimental set-up 
Using an acoustic measurement system, 150 data records 

have been acquired under various conditions. The acoustic 
system uses two air ultrasonic ceramic transducers mounted 
on pedals in a face-to-face direction. A waveform generator 
applied a 40 kHz sinusoidal tone burst consisting of twenty 
cycles to a transmitter. The transmitted signal was detected 
by a receiver. The received waveform was acquired at a 
sampling period  of ∆ 2 sµ . The two transducers were 
piezoelectric sensors.  

In addition to the 150 records, also a special record was 
acquired in an anechoic room. This waveform is used as a 
reference waveform representing the nominal response 

. Before the actual experiments took place, all records 
were individually processed in order to identify the true 
ToFs of each record and to estimate the parameter vector , 
that is mentioned in (5), and that describes the covariance 
model. The records were also used to estimate 

(0)h

p

25ˆ 0.00nσ =  
and ˆ 0.0026aσ = . Details of the estimation procedure are 
explained in [10]. 

Using (8), we calculated with ,  and (0)D (0)h p nσ . 
After that (0)kλ  and  are obtained. The window size 
selected was , whereas the number of samples in a 
record is between  and 100  samples. Fig. 3 shows 
the first 50 eigenvalues and their weights obtained from 
(17). The figure suggests that a large number of 
eigenvectors have weights that differ significantly from 
zero. Hence, a large number of filters/correlators would be 
needed to obtain the best result. 

(0)kv

00
1000

50
N =

00

 
4.2 Results 
The performance of the estimator has been assessed for 

varying numbers of J  to determine the number of 
filters/correlators. The performance involves two error 
factors, the bias and the standard deviation that are 
combined in the  (root mean squared). This error 
measure is calculated on the 150 records. It appeared that 
the estimator performs best if the number of filters is 
restricted to seven. 

RMS

Application of the estimator to the 150 records and 
comparison of the estimated ToFs with their true value 
resulted in measurement errors that are shown in Fig. 5. The 
figure also shows the errors made by the conventional 
matched filter. A statistical analysis applied to these errors 
yields the following result (units in ms):  
 Bias standard deviation RMS 
Cov. estimator -0.010 ± 0.002  0.027 ± 0.002  0.029  
Matched filter 0.007 ± 0.01  0.12 ± 0.01  0.12  

 
Fig. 5 shows that the matched filter produces two 

outliers. One of the two waveforms that gave rise to such an 
outlier is shown in Fig. 1. The interaction between the direct 
response and the first echo is such that the maximum value 
of the second interfering peak is much larger than the one of 
the first peak. In this example, the true ToF is near 13 ms. 
The matched filter has its maximum response near the 
second peak at 13.8 ms. The covariance based filter 
produces a maximum near the first peak at 13.1 ms. 

Fig. 5 shows how the covariance based estimator builds 
up the log-likelihood function. In this example, the observed 
waveform  is given in Fig. 1. The waveforms on the left 
side are the outputs . The waveforms on the 
right are the squared and accumulated signals, i.e. 

 with 

z

x v

( ) (0)T
kmx v

21
0 ( ( ) (0))J T

k km−
=Σ J  running from 1 up to 7.  
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Fig. 3 The first 50 eigenvalues and weights of the covariance 

based estimator 
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Fig. 2 Computational structure of the estimator 
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4.3 Discussion 
Since  is the dominant contribution to , 

the first eigenvector  is close to the direct response 
. Apparently, the first filter is equivalent to the matched 

filter, and our estimator embeds the conventional matched 
filter. Since all eigenvectors are orthogonal, the 
contributions of the other filters are supplementary to the 
matched filter. In the absence of reflections, the contribution 
of  to D  vanishes, and consequently all weights 
except the first one will be zero then. Thus, our estimator is 
a generalisation of the matched filter 

(0) (0)Th h

(0)

(0)D
0 (0)v

(0)h

C(0)

The statement that the information conveyed by the 
output of the other filters is supplementary is illustrated in 
Fig. 5. Clearly, the matched filter (first row in the figure) is 
misled seriously by the presence of the reflections. The 
other filters catch these reflections and correct the output of 
the matched filter. In the example of Fig. 5, the 3rd, 4th and 
7th filters provide the correction. For other reflections, as 
present in other records, the other filters are useful. In a 
waveform without reflections, the contribution of these extra 
filters is zero, due to the orthogonality of the filter 
responses. 

The newly proposed estimator outperforms the matched 
filter by a factor of about 4. Nevertheless, we have observed 
that the optimal number of filters is seven whereas the 
theoretical number is much larger. Probably, the explanation 
of this apparent contradiction is that the reflection model 
that we have used is only approximate. These modelling 
errors must be responsible for the deficiency. Future 
research must confirm this hypothesis 

 
5.  CONCLUSION 

 
The introduction of a model for the reflection in terms of 

a non-stationary covariance function leads to a new 
estimator for the time-of-flight of an acoustic tone burst. 
This estimator is a generalisation of the well-known 
matched filter since in the absence of reflections the new 
estimator and the matched filter are equivalent. In many 
practical circumstances, for instance indoor measurements, 
the ignorance of reflections can lead to large estimation 
errors. Application of the new estimator can reduce these 
errors by about a factor four.  

 

 

 
Fig. 4    The response of the first seven filters to the waveform in 
Fig. 1. Left: output of the filters. Right: Squared, weighted, and 

accumulated outputs. 
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