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Abstract − Measurement should be objective in principle. 
However, the accuracy of measurement often depends on 
various factors, including instruments of measurement, 
adopted intentionally or made available accidentally, and 
from a practical point of view, it is important to choose a 
suitable degree of the accuracy of measurement for the 
intention of measurement. The present paper discusses some 
information-theoretical aspects of the relationship between 
the degree of the accuracy of nominal description of objects 
and the interdependence among groups of those objects 
within a formal framework of clustering, where a new 
entropic measure of interdependence is applied to estimate 
the change of the interdependence when the nominal 
description becomes more `coarse’ so that several objects 
appear to be identical, and are grouped into the same class. 
The degree of interdependence is often measured by (sum of 
entropies of partial systems) - (entropy of the whole). Close 
examination shows, however, that instead of simple formal 
entropy we should take rather (the number of the members 
of a group)× (entropy of the group). The result also implies 
that in integration of information channels the average 
entropy plays an important role. A brief discussion is also 
made on elicitation of so-called information granules. 
 
Keywords: clustering, elicitation of information granule, 
interdependence analysis, measurement science, minimum 
average entropy.  
 

1.  INTRODUCTION 
 
Measurement is an acquisition of the knowledge of the 
external world, and there is little doubt that our concept and 
scientific theories depend strongly on the relationship, such 
as correlation and probabilistic dependences we discover in 
a great number of observed data. However, the accuracy of 
measurement is not determined by the measured object but 
depends on various factors, such as instruments of 
measurement, which may be adopted intentionally or made 
available accidentally, and on how those instruments are 
connected and operated. While measurement should be 
objective, if the structure of measured data depends on the 
accuracy of measurement then we shall have to admit that 
our theoretical picture of the external world is influenced in 
a very essential way by the additional factors which cannot 
be attributed to the world. Thus, from a practical point of 
view, it is important to choose a suitable degree of the 
accuracy of observation for the intention of measurement.   

Suppose that we observe a stochastic chain, or a sequence 

of numbers being produced, digit after digit, according to 
some stochastic rule, assuming that those numbers represent 
physical states of a system under consideration. Then it can 
be expected without calculation that grouping of numbers, 
or `states’, will cause the information content of the chain to 
decrease. However, if the original chain has redundancy in 
information-theoretical sense then the loss of information 
due to grouping would be small, or could be made vanish.  

There are innumerable examples where such a grouping 
of states plays a decisive role in our understanding of our 
surroundings. However, this subject of general interest has 
not been much discussed, excepting a few theoretical papers.  
As for mathematical investigation of the properties of 
stochastic chain, the papers of Blackwell [1] and Harris [2]  
in the middle 1950s are among the earliest studies of this 
subject. In 1960s, from the information-theoretical point of 
view, Satosi Watanabe compared a stochastic chain and a 
coarsely redefined chain, bearing in mind `microscopic’ 
description and `macroscopic’ description in physics, and       
discussed the effect of coarse observation of the states on the 
interdependence in stationary stochastic chain [8]. In the 
context of communication technology `noise’ has been 
understood as such that a certain number of emitted symbols 
are received as an identical symbol at the receiving end.  
Then the amount of information that can be sent through a 
communication channel with the `noise’ of this kind may be 
recapitulate from the point view of our coarse observation. 
At the end of 1970s, in relation to his `Fuzzy Sets’ Zadeh 
introduced a notion of information granule [10] to reduce 
heavy computational burden by representing information in 
the form of aggregates defined by a certain numerical level 
of similarity, indiscernibility or the degree of cohesion. 
Aiming at enlarging the scope of granule computing, 
Pedrycz newly defined the notion of information granule, 
and discussed the fundamentals of the subject [3][7].   

The present paper of a rather preliminary nature is an 
effort to introduce this subject of coarse observation into a 
formal framework of measurement science. On several 
occasions so far we have discussed the basic nature of 
classification procedure, regarding it as a form of nominal, 
non-quantitative measurement [4], and proposed a new 
approach to clustering [6] based on a modified concept of 
indiscernibility [5]. In the following consideration we 
extend our approach to integration of stochastic chains.  
After a brief review of our formal theory of clustering, we 
observe the basic properties of our entropic measure of 
interdependence, and then discuss the possibility of the 
extension of our approach to integration of stochastic chains.  
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The notion of information granule also can be recapitulated 
within our formal framework, and we make some comments 
and remarks on elicitation of information granules [7].  
 

2.  A FORMAL THEORY OF CLUSTERING 
 
2.1. Entropic measure of interdependence 
Suppose that we are given a set X = {x1, x2, …, xn}of objects, 
which we are going to classify. Each object is supposed to 
take any one of  N states, 1, 2, …, N, and we observe the 
object to check in which state it is repeatedly, say m times,       
with a fixed time interval. We further assume that there 
exists a unique probability p(x1, x2, …, xn)  that the group of 
those  n objects will take a set of  n  states. Then we have   

        

    This minimum entropy approach, called Interdependence 
analysis [8][9], has a number of theoretical merits, and often 
enable us to examine complicated inter-group relationship 
reflected in the observed data. However, as we shall see 
later in Example, sometimes this method does not function 
well. In order to understand from where this difficulty stems, 

let us consider a partitioning of X into a subset that has a 
single member, say {xi}, and the remaining members X \{xi}, 
and the interdependence J({xi}, X \{xi}) between them. If a 
cardinality of X is not so small and if patterns of the 
observed states has a wide variety then formal entropy of the 
entire group S(X) often coincides with formal entropy S(X 
\{xi}). That is, in such a case, we can remove some members 
from X, preserving the value of formal entropy function. 
Then, in (4), two terms in the right-hand side are cancelled, 
and the interdependence J({xi}, X \{xi}) is reduced to S({xi}). 
A small subset sometimes gives a very small entropy value, 
and in such a case the method of Interdependence analysis 
tells us to remove such a small subset from the entire set 
regardless of its relationship to other members.   
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Indeed, since our observation data are finite, we can define 
such a probability  p(x1, x2, …, xn) by the relative frequency 
of the appearance of a set of  n states in the whole data.  

Now let us divide the entire group X into two subgroups,  
XI  and XJ. Then we can define a probability p(XI), and in a 
similar way, according to this partitioning, we have p(XJ), 
p(XI , XJ  ), and hence we can define formal entropy functions 
for these groups of objects, respectively. For instance:  

                                                (3) ( ) i
i

iI ppXS log∑−≡

   Suppose that we are asked to divide the entire group X into 
two subgroups according to the result of our observation. 
Then how should we divide it? The interdependence J 
between two subgroups XI  and XJ  can be defined by 

 ( ) ( ) ( ) ( JIJIJI XXSXSXSXXJ ∪−+≡, )  (4) 

as a counterpart of redundancy in the communication theory 
[8]. Then it seems natural to divide the entire set so that the 
value of this J-function is minimized. In the context of 
pattern recognition this prescription has been known as a 
minimum entropy approach to clustering [8][9], and indeed 
this method is capable of dealing with complicated example 
which usual methods of clustering cannot cope with. A large 
number of practical algorithms to carry out clustering tasks 
are based on the notion of `distance’ between two objects, 
which reflects only `one-to-one’ relationship. The entropic 
measure of interdependence (4) can take `more-than-two-
elements-correlation’ into account.  

   One possible way to avoid this difficulty is to take the 
cardinality of subset into account, and to modify the 
entropic measure of the interdependence (4) as follows:  

 ( ) ( ) ( )
( )2121
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,

XXSnn
XSnXSnXXK

∪+−
+≡  (5) 

where n1 and n2 are cardinalities of  X1 and  X2 , respectively. 
Thus a new approach to clustering is: when we divide the 
entire set we should choose a partitioning which minimizes 
the value of K-function defined by (5) [5][6].  
 
2.2. Some basic properties of K-function  
Before we go to the next section, and observe an example, it 
may be appropriate to examine here some basic properties of 
the K-function, and to clarify the gist of our approach.  

The formal entropy function is infra-additive:  

 ( ) ( ) ( )2121 XXSXSXS ∪≥+  (6) 

for two subsets such that  X1  ∩ X2 = φ , and J-function is 
non-negative. This allows us to regard the interdependence J 
as a `branching cost' in a taxonomic tree, such as we shall 
see in Figure 1, and justifies the minimization of J-value in 
clustering. Formal entropy function multiplied by the 
cardinality, however, is supra-additive:  

 ( ) ( ) ( 21212211 )( XXSnnXSnXSn ∪+≤+ ) (7) 

and our K-function is non-positive. Then how should we 
understand the meaning of  K-value and its minimization?  

Dividing (4) by the cardinality  n1 + n2,  we have 

 ( ) ( ) ( ) ( 21
21
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That is, the K-value per member is the difference of the 
average entropy of the divided subsets from the entropy of 
the entire set. Then an immediate, intuitive interpretation is 
to regard the K-value as a measure of the entropy reduction 
by partitioning, and its minimization as a minimization of 
the degree of `post-partitioning' disorder, or uncertainty. 
When we consider a loss of entropy as a gain of information, 
this can be paraphrased also as the maximization of 
information gain by partitioning.  

Another, more convincing explication is as follows: By 
using the Bayesian formula we can rewrite (4) as  
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where the conditional entropy S( Xi | Xj ) can be understood 
as a measure of disorder, or uncertainty, of Xi under the 
condition that the knowledge of Xj is given ( i, j = 1, 2).  In 
other words, S( Xi | Xj ) can be regarded as the amount of 
information on Xi provided by Xj . If two groups are bound 
by close relationship then we have much information on the 
state of one group by observing the state of the other. If not 
so then the knowledge of the state of one group does not 
give any clues regarding the state of the other. 

Thus the quantity – S( Xi | Xj ) can be regarded as a 
measure of the degree of interdependence between Xi and Xj.  
Our K-function is, as (9) shows, a weighted sum of these 
terms, and measures the degree of interdependence between 
two groups by the amount of information which the one 
provides for the other. This is the gist of our approach. The 
proposed algorithm directs us to divide a group of objects 
into some subgroups so that the amount of information 
obtained through the inter-subgroup relationship is 
minimized. This view can be paraphrased also by regarding 
– K  as a measure of the degree of mutual independence. 

As for J-function, we can rewrite also (4) in terms of 
conditional entropy as  
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which shows that to minimize the value of J is to minimize 
the difference of S( Xi | Xj ) from S( Xi  ) ( i, j = 1, 2 ). This 
does not necessarily mean, however, to minimize the 
weighted sum of  – S( X2 | X1 ) and  – S( X1 | X2 ) in general.  

It should be remarked that we can define the 
interdependence J for a partitioning of X into more than two 
subgroups. Let X be a set of n objects, X = {x1, x2, …, xn}. 
We denote X newly X(0), and first divide it into m1 subgroups,  
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where  Xi 
(1)∩  Xj (1)  = φ ,  for  i ≠ j. Then we divide each 

subgroup Xi 
(1) into some sub-subgroups in a similar way. 

We continue this procedure until finally each resulting 
group consists only of one member { xi }, and obtain a 
complete taxonomic tree whose trunk is X (0), and whose 
peripheral branches are { xi }'s. Let us suppose that the k th 
branching point of the tree divides a subgroup X (k-1) into mk 
sub-subgroups,  X1 

(k),  X2 
(k), … , Xmk 

(k). Then we can define 
the interdependence J at this branching point by  
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Satosi Watanabe showed that the total sum of such 
interdependences taken at all branching points in a complete 
taxonomic tree is independent of the choice of the tree, and 
is equal to J (X (0) ; { x1 }, { x2 }, …, { xn } ) [8]. That is,  
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In a similar way, we can define our interdependence  K  by  
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and obtain, in accordance with the above mentioned formula,  
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and then, the right-hand side can be further transformed into  
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The comparison between the expressions (12) and (14), or 
(15), also clarifies the gist of our approach. The total 
interdependence measured by J  is nothing but the difference  
between the amount of total information on the state of the 
whole system and the sum of information on the state of 
each constituent component, while the total interdependence 
measured by K is the sum of information on the state of the 
whole system provided by  each constituent component.  
 

3.  EXAMPLE 
 
The proposed approach seems to be fairly reasonable. Let us 
give an example. The following example is a slight 
modification of the example which we discussed elsewhere,  
and then dubbed `a problem of seven red herrings’ because 
the example was first introduced to illustrate the difficulty of 
the original method of interdependence analysis.  
   Suppose that we are given a set X = {x1, x2, …, x7} of  
objects. For simplicity, we assume that each of these seven 
objects takes one of two states, say 0 and 1, and that we 
observe the states of these objects eight times with a fixed 
time interval. The result of observation is supposed to be 
given by Table 1, where the j th column aj corresponds to 
the result of the j th observation. Now let us consider 
clustering of these seven members based on the data as 
shown in this table.  
Applying the original method of interdependence analysis 
and our new method, we obtain a polychotomic tree of 
Figure 1a and that of Figure 1b, respectively. At the first 
stage of clustering, the minimum of J is given by a 
dichotomy { X7 , X123456 }, abbreviating  Xi  = { xi }, Xij  = 
{ xi , xj }, and so on, and the method of interdependence 
analysis directs us first to remove { x7 } from the entire set. 
Since  x7  has only two 1's in its row, while others have four, 
this prescription may seem rather reasonable. In the second 
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stage, however, this method cannot find any intergroup 
relationship among the remaining six members. 

 
Table 1.  A modification of a problem of seven red herrings 

00010001
10011001
01010101
01011010
11001100
11000011
00001111
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The proposed method first divides the entire set into two 

groups, { x1,  x2,  x4 } and { x3,  x5,  x6,  x7 }. It should be 
remembered that our approach is based on formal entropy 
function defined on a group of objects, and that we can 
replace a member of the group, say xi, with 

ix  which is 
obtained by inverting 0 and 1 in a row corresponding to  xi , 
remaining the value of entropy function to be the same. 
Then, inverting 0 and 1 in rows of x3, and of x4, and 
rearranging the order of the members, we obtain Table 2. In 
the lower half of the table, an arrangement of 0 and 1 in the 
left-hand side is repeated in the right-hand side, while in the 
upper half of the table the inverted pattern of 0 and 1 is 
repeated. That is, our result corresponds to a partitioning of 
the table into a periodic and an inverted-periodic subtables.  

In passing, as for the numerical values, we have  
 

J( X7 , X123456 ) = .5623 < 1.3863 = J( X124 , X3567 ) 
 

K( X7 , X123456 ) = -1.5171 > -2.7695 = K( X124 , X3567 ) 
 

In the second stage our method divides { x1,  x2,  x4 }  into 
three subsets, each of which has only one member, while {x3,  
x5,  x6,  x7 } into two, discerning x7 from other members. 
This example shows that our entropic measure of 
interdependence is indeed capable of finding out very subtle 
inter-group relationship among groups of objects, which the 
original method of interdependence analysis may not 
uncover. Other examples are discussed in [5][6][7].  
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Figure 1.  Two ways of clustering of the seven members 
illustrated in Table 1. 

Table 2.  Rearranged table according to the result of clustering 
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4.  DISCUSSION 

 
4.1  Interdependence analysis in stochastic chains 
So far we have discussed the interdependence analysis in a 
finite sequence of observed data. Under a suitable condition 
we can extend our approach to more general case as follows: 
Suppose that we are given an infinite sequence of  numbers, 
which represent `states’ of  the system under consideration. 
Any phenomenon, as presented to our cognizance, can be 
regarded as such a sequence of `states’ or `situations’ 
arranged on a time axis t. For simplicity, we further assume 
that  each position of this infinite sequence takes any one of 
N states, 1, 2, …, N, as before. If there exists a unique 
probability  p(x1, x2, …, xn)  that a sequence of n consecutive 
positions will take a set of states x1, x2, …, xn, and if this 
probability is independent of the location of the segment in 
the infinite sequence, that is, if this stochastic chain is 
stationary, then we can apply our method to this sequence, 
and analyse the interdependence existing among various 
groups of positions of these n consecutive positions.  
   As a counterpart of  redundancy in communication theory, 
the J-function, defined by (4), has been accepted as a 
measure of the degree of interdependence. However, our 
exapmle observed above, with other examples discussed in 
[5][6][7], strongly suggests us that we should take rather the 
K-function, defined by (5), as a measure of the degree of 
interdependence. It can be expected without calculation that 
in so far as we evaluate the degree of interdependence 
among objects the original method based on J-function and 
our modified method based on K-function give more or less 
similar results. Indeed, for instance, as we see in (12) and 
(14), the difference is in the term of the total entropy, which 
is constant when we fix the entire set of objects, or segments. 
However, when we evaluate the degree of interdependence 
among groups of objects, that is, groups of different size or 
segments of various lengths, the proposed method seems to 
provide us with a natural, convincing result.  
   Of course there are many ways of thinking about how we 
look at `coarse-grained’ observation of objects. In our 
formal framework sketched above we have discussed the 
interdependence among groups of objects, regarding 
clustering as a form of `coarse-grained’ observation. In his 
information-theoretical approach to pattern recognition and 
clustering, in 1960s, Satosi Watanabe discussed another 
form of `coarse-grained’ observation as follows:  Let us go 
back to the stochastic sequence as we discussed above, and 
consider grouping of  N states ,1, 2, …, N, into N’ classes, 1, 
2, …, N’, where N’ ≤  N, so that no class is empty and each 
state belongs to one and only one of those classes. If we 
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introduce `macroscopic’ variables iξ , i = 1, 2, …, k, to label 
the class to which the state of the i th position belongs then 
the `macroscopic’ state of this chain is described in terms of 
these iξ ’s as , , …, 1ξ 2ξ kξ . With such a formalization 
Watanabe evaluated the loss of information of the original 
`microscopic’ chain due to macroscopization in the presence 
of redundancy, and discussed the change of the range of 
correlation by grouping of the states [8]. Our approach is a 
possible modification of the method of interdependence 
analysis, and will shed a new light upon this line of interest.  
 
4.2  Elicitation of information granules 
Another form of `coarse-grained’ observation  can be found 
in the context of so-called soft computing approach, as an 
extension of fuzzy set theory. At the end of 1970s, in order 
to reduce heavy computational burden, Zadeh introduced a 
heuristic notion of information granule [10], and proposed 
representing information in the form of aggregates defined 
by a certain numerical level of similarity, indiscernibility or  
cohesion [3][7]. Our formal approach to clustering has some 
interesting implications also as to the formation of granules.  

First of all, considering the convenience of computation, 
it seems natural to form information granules in a step of 
processing so that each granule consists of more or less 
equal numbers of objects. However, as we observed in our 
example, if we pay attention to the intrinsic nature of the 
empirical data under consideration, and take its structure 
into account, then different sizes of information granules 
may give a suitable granulation.  

Besides, secondly,  according to the current understanding 
of soft computing approach, granulation procedure seems to 
be regarded as a conventional preprocessing of numerical 
data to cope with a huge data structure. However, our 
example shows that a suitable granulation enable us to 
examine a subtle and complicated relationship among 
groups of objects, decomposing the entire system under 
consideration into some elementary constituent components. 
Thus granulation procedure helps us to understand 
complicated structure of complex systems [6].  

Third, in our formal theory of clustering we have 
introduced a modified concept of indiscernibility [5], called 
weak indiscernibility, between two groups of objects. If we 
apply this concept to measure the distance between two 
binary sequences then we have to take one binary sequence, 
for instance, 1101001…., and the sequence obtained by 
inverting 0 and 1 in that sequence, 0010110…., to be 
essentially identical. This may seem somewhat queer, in 
particular, considering the usual information measure such 
as Hamming distance. However, a principle of minimum 
average entropy justifies this seemingly counter-intuitive 
consequence, and our modified concept of indiscernibility 
between two groups of objects sheds a new light upon the 
forming of information granule [5].  

In passing, fourth, Pedrycz mentioned a problem of how 
to define the dimension of information granule as an open 
question in granule computing [3], and our formal approach 
suggests a possible candidate of the notion of the dimension 
of information granule. In this respect, and other comments 
and remarks on forming of information granules, see [7]. 

5.  CONCLUSION 
 
The growth of instrumentation technology has enabled us to 
obtain fine and precise information on our surroundings. 
However, we do not always need precise information such 
as long sequences of numerical data. We need information 
with a suitable degree of accuracy according to our intension 
of measurement: sometimes coarse observation meets our 
need. Balancing the fineness of observation with the 
required accuracy of information is a subject of interest in 
design of measurement systems. Regarding clustering task 
as a form of `coarse-grained’  observation of objects, here 
we have discussed a formal approach to the interdependence 
analysis in the information obtained by `coarse-grained’ 
observation. Starting from a formal framework of clustering, 
we examined the basic properties of  new entropic measure 
of the degree of interdependence, and pointed out its 
potential significance in analysis of the relationship among 
various sequences in a stochastic chain. Our result suggests 
that when we examine the relationship between sequences 
of different length, or groups of different size, we should 
take the average entropy as a measure of interdependence. 
Our formal framework is a one possible approach to a 
theory of coarse-grained information, whose scope will 
embrace various subjects, such as mathematical theory of 
stochastic chains, error and coding problems in 
communication theory, algorithms of pattern recognition 
and clustering, and some fundamental topics in theoretical 
physics. The field of measurement science seems to be rich 
in examples where the notion of coarse-grained information 
plays a crucial role..  
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