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Abstract − The cross-correlation function is commonly 

used to measure the transit time between two similar signals. 
The maximum value of the cross-correlation function 
corresponds to the transit time. The other way to measure 
this is to add the two signals. This method is comparable 
with the well known interference measurement technique. In 
the spectrum of the added signals after filtering a cosine 
function can be determined. The frequency of this function 
is directly proportional to the transit time. 
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1.  Introduction 
 
The calculation of the cross correlation function is 

normally used to determine the transit time of two similar 
signals. Two sampled signals ( )an nTxx =  and 

( )an nTyy =  with the index number n , which can have 

values between 0  and 1−N , and the sampling time 

aT are given. If both signals are identical and time shifted 

by the transit time aiT=τ , the following equation is valid: 

 ( ) ( )( )aa TinxnTy −= . (1) 

The cross correlation function of these two signals is 
defined as: 
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This function is identical with the autocorrelation 
function of the original signal shifted by the transit 
time aiT=τ . So the maximum of the cross correlation 

function corresponds with the transit time aiT=maxτ , 
“Fig. 1”. 
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Fig. 1.  Cross correlation function 
 
The alternative method for determining the transit time 

by calculation of the cross correlation function is an analysis 
of the addition of both signals. The superposition of the 
signals leads to a cosinusoidal oscillation in the spectrum. 
There is a directly relationship between its frequency and 
the transit time. 

 
3.  Transit time calculation 

 
The mathematical theory will be shown for two identical 

time shifted signals: The discrete Fourier transform of a 
signal ( )an nTxx =  is defined as 
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with k
NTa

k
πω 2=  and 1,...,1,0 −= Nk . 

The inverse discrete Fourier transform is 
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with k
NTa

k
πω 2=  and 1,...,1,0 −= Nn . 
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The second signal is shifted by transit time aiT=τ : 

 ( ) ( )( ) .aa TinxnTy −=  (5) 

The signal is sampled at the points at 
( ) aan TinnTt −=−= τ  related to the first signal, so the 

inverse discrete Fourier transform results in 
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The Fourier transform of the time-shifted signal yields 

 ( )( )aTinx −   ( ) .2 Nkij
kd ejX πω −⋅  (10) 

On condition of linearity the Fourier transform of the 
addition of the time signals ( )anTx  and ( )( )aTinx −  is 
equal to the addition of the Fourier transforms of both 
signals: 

 ( ) ( )( )aa TinxnTx −+      
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That implies for the absolute value of the spectrum 
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The absolute value of the second signal is identical with 
the first signal: 

 ( ) ( ) ( )kd
Nkij

kdkd jXejXjY ωωω π == − 2  (13) 

So the absolute value of the added spectrum yields 

 ( ) ( )aa nTynTx +  

  (14) 

 ( ) ( )( ) ( )NkijXjY kdkd πωω cos+  . 

The sum of the absolute value of both signals is 
multiplied by ( )Nkiπ2cos . This term oscillates between 
zero and one. It is interesting to note that the frequency of 
the oscillation is directly connected with the transit time 

aiT=τ  between both signals. The  

 
The term ( )Nkiπ2cos  contains the time shift 

aiT=τ . Therefore the frequency in the added spectrum is a 
function of transit time between both signals. The main task 
of the signal processing is the detection of cosine frequency. 

 
2.  Simulations 

 
To illustrate the mathematical context, the measurement 

of transit time is simulated. Two identical signals are shifted 
by a defined transit time and consist of normal distributed 
random numbers with a large bandwidth. Because of the 
linearity, the adding of the signals in either the time domain 
or in the frequency domain leads to the same result: 

 ( ) ( )aa nTynTx +   ( ) ( )kdkd jYjX ωω + .(15) 

f

( )ωjX d
signal 1

signal 2

signal 1 +signal 2

Fig. 2. Spectra of the two signals of and of the addition signal 
 

In the spectrum of the sum signal a cosine oscillation is 
superposed. “Fig. 2” shows the absolute values of the 
spectrum for both single signals and for the sum signal. The 
cosine oscillation extends over the whole spectrum.  
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Fig. 3. Influence of the transit time on the frequency of the cosine 
oscillation 
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The frequency is a function of transit time between both 
signals and can be separated from the absolute value of the 
sum spectrum ( ) ( )( ) ( )NkijXjY kdkd πωω cos⋅+ . 

The frequency of the cosine oscillation, witch depends 
on transit time, is shown in “Fig. 3” for four different time 
shifts. Wit increasing transit time the frequency is rising. 
The cycle duration corresponds with the first zero crossing 
of the first derivative. Knowing the period time the 
frequency can be calculated. 

In practice the two signals are often not identical. 
Nevertheless the cosine term in the spectrum can be 
separated. “Fig. 4” shows the cosine function after adding 
two none identical but similar signals. 

A gauge for the similarity of both signals is the height of 
the standardized cross correlation function. In this case both 
signals are similar with a value of 87 %. 
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Fig. 4. Cosine oscillation disturbed by noise 
 
The oscillation for all transit times is disturbed by noise. 

The main task of signal processing is the detection of the 
cosine term. 

 
3.  Practical applications 

 
Besides the signal-to-noise ratio the bandwidth of the 

time signals has a major influence on the determination of 
the oscillation frequency. Practical examples for similar 
signals with a low bandwidth are the ultrasonic 
measurement results of streaming gas flow. Natural 
structures occurring in streaming fluid modulate a sinusoidal 
ultrasonic carrier signal in both amplitude and in phase. The 
signals of two barriers downstream in a distance d  are not 
identically modulated because of the dissipation of the 
structures. The modulation is only limited by a small 
frequency band so the bandwidth of the demodulated signals 
is very low. In “Fig. 5” the absolute value of the spectrum of 
both signals and of the added signals are shown.  
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Fig. 5. Spectrum of signals with a low bandwidth 

 
The separated cosine oscillation for four different transit 

times caused by different flow velocities is shown in 
“Fig. 6”. 
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Fig. 6. Cosine oscillation disturbed by noise caused by two not 

identical signals 
 
The signals are strongly disturbed by noise so the 

oscillation disappears after two consecutive periods. The 
easiest way to determine the filtering of the time signal is by 
calculating the auto-correlation function.. The auto-
correlation function leads to a cosine oscillation with much 
less noise than the original time signal, Fig. 7”.  

Especially in the case of low flow velocities success is 
realized because there is still recognition of the cosine 
oscillation after the occurrence of several periods. But the 
frequency of the oscillation can not be determined with 
these signals  
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Fig. 7. Cosine oscillation after filtering with autocorrelation 

function 
 
For further signal processing the spectrum of the filtrated 

cosine oscillation is calculated, shown in “Fig. 8”. 
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Fig. 8. Spectrum of the filtered cosine oscillation 

 
In this case the noise level appears to be different for all 

transit times because of the use of varied scales as shown in 
the figure above. For all velocities the dominating frequency 
can be clearly detected as a maximum value in the spectrum. 

With the value of the dominating frequency in the 
spectrum the transit time can be calculated. Another 
possibility to determine the frequency of the cosine 
oscillation is the measurement of the period. A digital filter 
allows to pass a frequency range just around the dominating 
frequency in the spectrum and minimizes noise in the 
oscillation signal. The result is shown in “Fig. 9”. The cycle 
duration corresponds with the first zero crossing of the first 
derivative. With information about the period the frequency 
can be calculated. 
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Fig. 9. Filtrated signal with deviation 
 
So there are two different possibilities to detect the 

frequency of oscillation in the spectrum of the added 
signals. 

 
4.  Conclusion 

 
The results obtained have shown, that the addition of two 

signals shifted by a transit time and the analysis of the 
spectrum is an alternative to cross-correlation measurement. 
The spectrum is overlapped with a cosine oscillation. The 
frequency value is directly related to the determined transit 
time. Using a suitable filter technique the noise of the 
oscillation can be reduced to nearly zero. By this method the 
frequency and the transit time can be accurately calculated.  

In practice the measurement signals are analogue and 
have to be converted. Typical of the new method is that the 
analogue digital conversion is limited to only one signal, 
because the signals of both barriers can be added analogous. 
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