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Abstract - The spectrum analyser is a complex piece of
instrumentation, which requires careful operator training to
fully exploit its features. Over the years its structure has
evolved, both as a result of technological advances and in
response to new measurement requirements. A modern
spectrum analyser thus offers the user an extensive array of
functions and options, arranged in complex menu structures.
A side-effect of this situation is that sometimes it may be
difficult to retain a common conceptual view of the
instrument operation, since a variety of factors and set-up
parameters come into play. This paper proposes a theoretical
analysis of spectrum analyser operation, with the aim of
providing a conceptual framework that can be readily
adapted to most practical situations.
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1. BASIC MODEL

Let x(t) be a real-valued signal having limited bandwidth
B. The most important operation in a spectrum analyser is
super-heterodyning, which is carried out in accordance with
the functional diagram given in Fig. 1. The local oscillator
output is assumed to be a cosine wave whose frequency fLO
varies linearly with time. The resulting sweep allows the
analysis of the desired frequency span.
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Fig. 1: supeheterodyning in a scanning spectrum analyser.

The intermediate frequency (IF) filter, centred at the
frequency fIF, is a symmetric passband filter, whose impulse
response can be written as:

)2cos()()( tftwth IFπ= , (1)

where w(t) is a real function called the filter envelope. It is
assumed that the filter bandwidth BH is very narrow, so that
it satisfies the condition BH << fIF. It is known from filter
theory that w(t) can be interpreted as the impulse response
of an equivalent baseband filter, whose bandwidth is
BW = BH/2. The relationships among the frequency
parameters involved in superheterodyning are summarised
in Fig. 2.
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Fig. 2: frequency relationships in superheterodyning.

The output of the intermediate frequency filter is
expressed by the convolution integral:
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where KM is the mixer conversion factor which, for the sake
of simplicity, is assumed to be constant and independent of
frequency.

The mixer output xM(t) = KM⋅x(t)cos2πfLOt can be
decomposed into frequency components centred around the
frequencies fLO - fIF and fLO + fIF; however, from Fig. 2 it is
clear that only the former will give rise to a response at the
filter output. Since the amplitude calibration factor of the
instrument will account for the effects of mixing, in the
following it will be assumed that KM = 2. Then, by using
well-known trigonometric relationships, (2) can be rewritten
as:
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As the signal y(t) is narrowband, it can be described by a
complex representation. For this purpose we introduce the
function:
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using which the IF filter output can be written as:
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The function defined by (4) is called the complex envelope
of y(t): its magnitude is the conventional envelope of the
signal y(t), and the angle is the phase of the same signal with
respect to the IF filter centre frequency fIF. Using (4), the
relationship between the input signal and the IF filter output
can be expressed more concisely. In fact, equation (3) can be
rewritten in the form:
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This shows that, in the general case, the response of the IF
filter is an amplitude- and phase-modulated sinewave.

It is interesting to observe that (4) can also be interpreted
as the Fourier transform of the function x(τ)w(t-τ),
calculated at the frequency f = fIF-fLO. In this way the filter
envelope w(t) is seen as a multiplying term and, by applying
Fourier transform properties, the complex envelope of y(t)
can be expressed as a function of X(f) and W(f) as:
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where the symbol * indicates the convolution operation.
Equation (7) provides an alternative way to express the
result of the superheterodyning operation, but it also has an
important conceptual meaning, as will be discussed in
Section 5.

Depending on the architecture of the specific spectrum
analyser, the IF filter output y(t) can be processed in a
variety of ways in subsequent instrument stages [1]. In a
traditional analogue scanning analyser the envelope of y(t) is
recovered by means of a linear detector; further analogue
stages may follow, until the resulting trace is eventually
digitised. In more recent instruments, the IF filter output is
digitised directly and processed by digital algorithms [2],
[3].

Spectrum analysers have been provided with an ever-
widening array of detection functions, designed to help the
user analyse a broader variety of signals. Peak detectors,
RMS detectors and FFT-based processing have all
contributed to a significant improvement of the
measurement capabilities of the instrument. However,
somehow this forces users to think of the spectrum analyser
as a set of different instruments, each one being specialised
in dealing with some signal classes and having specific
calibration parameters [4]. Although this can be managed
after some training, from a conceptual point of view it
would be desirable to provide a unified approach.

The purpose of the work presented in this paper will be
to show how a common theoretical framework can provide
an analytical description of spectrum analyser measurements
that encompasses most cases of practical interest, regardless
of the specific instrument architecture.

2. POWER ANALYSIS

The discussion will be restricted to scalar analysers,
therefore only the amplitude information contained in y(t)
will be considered in the following. Usually, this means that
a linear detector is employed to obtain the envelope of the IF
filter output, )(ts

LOIF ff − . However, spectrum analyser

measurements are more commonly considered in terms of
power, thus it becomes more natural to think of the
corresponding power function as the object of the analysis.
At this point it is important to recall that the complex
envelope depends on two variable quantities: time and the
local oscillator frequency fLO. With a correct instrument set-
up the frequency sweep is slow enough that a quasi-

stationary behaviour can be assumed for the latter.
Therefore, the measured trace can be seen as a succession of
constant values of fLO, making the analysis simpler.  It is
also useful to introduce a change of variables, which follows
naturally by noting that the abscissa on the spectrum
analyser display is calibrated to indicate directly the
analysed signal frequency fx. This quantity is obtained
simply as fx = fLO-fIF. Accordingly, the trace T(fx, t) that is
considered in the following is defined by the expression:

)()()(),( *2
tstststfT

xxx fffx −−− ⋅== .      (8)

In the simple case of a sinusoidal signal,
x(t) = A0sen(2πf0t + ϕ0), the complex envelope can be
obtained from (7). Considering the range of variation of fLO,
as shown in Fig. 2, and assuming the IF filter selectivity is
enough to have |W(f)| ≅ 0 for |f| > f0, only one of the two
frequency components of the sinewave will be present in the
spectrum analyser trace, yielding:
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In this case there is no dependence on t, which means the
displayed trace will not change with time. As can be
expected, the trace will peak at fx = f0, with an amplitude
proportional to half the signal power.

3. RANDOM PROCESSES

For analysis purposes, several signals (e.g., digitally
modulated telecommunications carriers) are better
represented as random processes. It will now be assumed
that the analysed signal x(t) be a zero-mean stationary
random process having power spectral density Sxx(f).

When the IF filter bandwidth BH is narrow in comparison
to the signal bandwidth B (i.e., BH << B), the power spectral
density (PSD) of x(t) is approximately constant within the IF
filter passband. Therefore, in that interval one has Sxx(f) ≅
Sxx(fIF - fLO). Introducing again the change of variables
fx = fLO-fIF, and recalling that Sxx(f) is even symmetric, the
PSD of the random process y(t), that represents the IF filter
output, is expressed by:
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In view of its consequences, the importance of the
assumption that BH << B should be emphasised. In fact, the
duration of the IF filter impulse response is proportional to
1/BH, whereas the correlation of x(t) tends to vanish when
delay values get larger than 1/B, that is, in a much shorter
time. It follows that y(t) can be interpreted as the linear
combination, through h(t), of a large number of uncorrelated
realisations of x(t). The central limit theorem, then, implies
that the IF filter output is a gaussian process.

 At this stage, it would be possible to follow the same
approach introduced in Section 1. However, further analysis
is complicated by the fact that (4) would now represent a
complex random process with correlated real and imaginary
parts. It is more useful to consider instead  an equivalent
process having the same second-order description, but better
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analytical tractability. With this aim, the narrow band
gaussian process y(t) can be replaced by the weakly
equivalent random process [5]:

[ ] [ ])(2sen)(2cos)( tvtftutftz IFIF ππ += , (11)

where fIF is the IF filter centre frequency; u(t) and v(t) are
uncorrelated, zero-mean, stationary and gaussian processes.
The PSD's of the two baseband processes are:
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which implies that z(t) has the same PSD as y(t). Then, the
(weakly equivalent) complex envelope becomes

)()()( tjvtuts
xf −=− , from which the mathematical

expression of the spectrum analyser trace can be obtained:
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When the analysed signal is described by a random process,
the resulting spectrum analyser trace will be affected by
random fluctuations. Therefore it is necessary to consider its
expected value which, from (12) and (13), is:
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It should be noticed that the expectation is conditional on
the local oscillator frequency taking the fixed value fLO.

Equation (14) shows that the mean value of the trace
provides an indication that is proportional to the PSD of the
analysed random process. In practice, it has to be assumed
that a number of traces will be acquired and their average

),( tfT x  is taken as the measurement result.
It is interesting to compare the integrals of traces (9) and

(14) for positive values of fx. For a sinewave, recalling the
assumption that |W(f)| ≅ 0 when |f| > f0, one has:
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In the case of a random process, the integral for positive
frequencies yields:
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In both cases, the result is equal to half the signal power, as
would be expected by considering only positive frequencies
in a two-sided Fourier transform. It is apparent, therefore,
that the trace defined by (8) may allow to present the results
of spectral analysis by a scanning superheterodyning
instrument in a unified form. This claim has to be checked
against yet one more case of interest.

4. PULSE SPECTRA

The case commonly referred to as a pulse spectrum
occurs when the signal spectrum is composed of a large

number of spectral lines, narrowly spaced along the
frequency axis and having a more slowly varying amplitude
envelope. The spectrum can be expressed as:
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where F is the (uniform) spacing between adjacent lines. In
this situation it may be difficult to find a satisfactory
instrument set-up for measuring the line spectrum. Since the
amplitude envelope may have greater interest, the analyser
is used to measure it as a continuous function of frequency.

Since the IF filter bandwidth is wider than the spectral
line separation, several components may fall within the
passband simultaneously. Nevertheless it is still possible to
determine the complex envelope of y(t) from (7):
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It can be seen that the trace (8) computed from this
expression will be composed of two terms, one being
constant, while the other varies with time and is due to
cross-terms in the multiplication of )(ts

xf−  by its complex
conjugate.

As a simple example, let the analysed signal be
composed of just two sinewaves:

)2sen()2sen()( 111000 ϕπϕπ +++= tfAtfAtx ,      (19)

where f0 < f1 and the difference f1 - f0 be smaller than the IF
filter bandwidth BH. The resulting complex envelope is the
sum of two terms:
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A graphical representation is given by the vector diagram of
Fig. 3.
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Fig. 3: vector diagram showing the composition of terms in  (20).

It is important to notice that the two vectors have
different angular velocities ∆f0 = fx - f0 and ∆f1 = fx - f1.
Consequently, for any value of fx, the trace computed from
(20) contains a constant term, as well as a sinusoidal term
having frequency f1 - f0. The latter cannot be eliminated by
the envelope detector, whose bandwidth must be wider than
BH whereas, by assumption, f1 - f0 < BH. However, it is
possible to get rid of this term, for instance, by averaging the
trace, since the phase of the sinusoidal term varies randomly
from one sweep to the next. The situation is summarised in
Fig. 4 for the case of equal amplitude components. The
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continuous line shows the trace obtained after averaging,
while dotted lines have been used to indicate both the
appearance of a single trace and the position of the two
components.

Fig. 4: spectrum analyser trace for two closely spaced lines.

In the general case, then, the averaged trace ),( tfT x
yields:
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Considering once more the integral for positive frequencies
one has:
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which shows that, with the added assumption of post-
detection filtering, the trace integral is still proportional to
half the signal power.

5. UNIFIED FRAMEWORK

The analysis presented in the previous sections has
evidenced that it is always possible to think of the trace in a
scanning spectrum analyser as a measurement of the power
spectral density of the analysed signal. Remarkably, this
holds true also for signals that are not represented by
random processes. As a logical consequence, it should be
possible to deal with spectrum analyser measurements in a
unified way, regardless of the analysed signal class.

It should be remembered that (8) is a theoretical
definition, that does not always correspond with the actual
trace on the analyser screen. As recalled in Section 1, the
envelope detector output can be further processed and,
usually, different calibrations are possible for the vertical
(power or amplitude) scale of the spectrum analyser. In
particular, the traditional approach is to calibrate the scale so
that, given a sinewave input, the peak value of (9) directly
corresponds to its power (or rms value). In this case the
calibration factor would be 2/[|W(0)|2 ⋅ |Zin|], where Zin is the
spectrum analyser input impedance. By comparison, (14)
requires an entirely different factor to provide a PSD
measurement. In fact, (14) can be rearranged in the form:

[ ] 2)0()(),( WENBWfStfTE xxxx ⋅⋅= , (23)

where ENBW is the equivalent noise bandwidth of the IF
filter, defined as:
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The required calibration factor is 1/[ENBW ⋅ |W(0)|2 ⋅ |Zin|],
or, better, 2/[ENBW ⋅ |W(0)|2 ⋅ |Zin|] if the trace is to be
interpreted as a one-sided (positive frequencies only) PSD.
Of course the "PSD calibration factor" differs both in value
and in meaning from the "sinewave power calibration
factor", making the two measurements incompatible. This
problem is addressed in some instruments by providing a
dedicated "noise marker" [6]. On the other hand, (15) shows
that sinewave power measurements can be obtained also
when the "PSD calibration factor" is employed, provided the
trace is suitably processed. It follows that a unified
interpretation of spectrum analyser measurements can be
obtained if the "PSD calibration factor" is applied for all
signal classes.

The considerable similarity of results given by (15), (16)
and (22) can be traced back to the frequency domain
interpretation of the complex envelope, given by (7). It is
apparent that the filter envelope w(t) can be thought of as a
windowing function for the analysed signal; in fact, in any
practical filter realisation w(t) has finite duration, effectively
giving a finite observation time for any frequency
component of the signal x(t). Thus, even though the
operating principle is entirely different, the behaviour of a
scanning spectrum analyser can be directly compared to that
of Fourier-based digital spectrum analysers. Likewise, (9)
shows the effect of what, in Fourier analysis parlance, would
be termed spectral leakage, with the frequency response of
the IF filter baseband equivalent, W(f), taking the role of the
window spectrum. The resolution bandwidth BR is the -3 dB
bandwidth of W(f), therefore BR = BH.

It should be noticed that the value of ENBW defined in
(24) differs from that of the resolution bandwidth BR;
however, the ratio ENBW/BR is a filter design parameter and
can be considered constant within a given instrument,
whereas BR can be changed according to user needs. Thus,
the one-sided PSD calibration factor can be rewritten in the
final form:
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where only the term 1/BR needs to be changed whenever the
user-selected resolution bandwidth is changed.

6. MEASUREMENT WITH SAMPLED TRACES

The spectrum analyser usually displays a sampled trace.
Therefore, all related expressions should actually be
considered in sampled form with the number of samples
available, N, being finite. Thus, within the selected
frequency span FSPAN the spectrum will be measured only at
the frequencies fx = kF, with k being an integer and
F = FSPAN/N. However, sampling can be carried out in a
number of different ways; often, the sampling circuit may
comprise a peak detector so that, as the analyser sweeps
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through the selected span, the value obtained by sampling is
the peak value within a frequency interval of width F. This
kind of processing is not applicable with the proposed
approach, so it must be assumed that any kind of detector is
disabled within the instrument and straightforward sampling
is carried out. In this way, (9) corresponds to the sampled
trace:
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Recalling that W(f) is a narrow band function, estimation of
sinewave power, based on (15), can be obtained by the
discretised form:
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where K1F and K2F bound the frequency interval where
|W(f - f0)| > 0. This further evidences the similarities with
Fourier-based digital spectrum analysis. In fact, reference
can be made to [7], where an accurate algorithm for
parameter measurement of sinewaves and multifrequency
signals, based on the use of power relationships like (27),
has been proposed.

7. CONCLUSIONS

The presented approach suggests that, by taking an in-
depth view of the operating principles of a scanning
spectrum analyser, it is possible to unearth some general
concepts, that tend to be hidden by the practical intricacies
of the instrument. It is hoped that the theory introduced in
this paper will also help in the understanding of newer
generation instruments, where Fourier-based analysis is
being progressively introduced with direct sampling of the
IF filter output. The measurement procedures outlined in the
paper can be applied to any kind of scanning spectrum
analyser although, being different from the standard
practice, they may need to be implemented as off-line
processing algorithms. As long as a properly digitised trace
and the required calibration data are available, results can be
expected to be at least comparable.
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