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Abstract − At the application level, it is important to be 

able to define around the measurement result an interval 
which will contain an important part of the distribution of 
the measured values, that is, a confidence interval. This 
practice acknowledged by the ISO Guide is a major shift 
from the probabilistic representation as a confidence interval 
represents a set of possible values for a parameter associated 
with a confidence level. It can be viewed as a probability-
possibility transformations by viewing possibility 
distribution as encoding confidence intervals. In this paper, 
after having recalled probability/possibility links by the 
notion of confidence intervals, previous works concerning 
transformation of symmetric probability distribution into 
possibility distributions are extended to asymmetric 
probability distributions. 
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1.  INTRODUCTION 

Uncertainty is a key concept for the measurement 
expression [1][2][3]. Indeed, in many application domains, 
it is important to take the measurement uncertainties into 
account, especially in order to define around the 
measurement result an interval which will contain an 
important part of the distribution of the measured values, 
that is, a confidence interval [4]. Such an interval allows to 
define later decision risks, as for example the risk to accept a 
defective lot, the risk to exceed an alarm threshold, etc.  

 
A main tool to deal with sensor measurement uncertainty 

is statistics [5]. This tool needs a mathematical support to be 
used, especially to propagate uncertainties. Two theories are 
mainly considered : the interval calculus [6] and the 
probability theory [5]. Although the interval calculus allows 
simple calculations, the resulting model is very imprecise. 
Moreover, it only supplies the confidence interval of the 
100% confidence degree. Thus, the use of the probability 
theory seems to be necessary to supply confidence intervals, 
but to handle the whole sets of confidence intervals is quite 
complex by a probability approach. This practice 
corresponds to a major shift from the regular probabilistic 
representation, as a confidence interval represents a set of 
possible values for a parameter, associated with a 

confidence level. It can be viewed as a probability-
possibility transformation, quite the converse move with 
respect to the Laplacean indifference principle, which 
presupposes uniform probability distributions when there is 
equipossibility among cases. However the weak point of the 
confidence interval approach is the necessity of choosing a 
confidence level. It is usually taken as 95% (which means a 
.05 probability for the value to be out of the interval). 
However this choice is rather arbitrary. 

 

In fact, possibility measures can encode families of 
probability distributions [7][8] and can be viewed as a 
particular case of random sets [9][10]. Hence it is tempting 
to try to generalise the notion of confidence interval using a 
probability-possibility transformation. The idea of viewing 
possibility distributions, especially membership functions of 
fuzzy numbers, as encoding confidence intervals, is actually 
not new. Well before the advent of fuzzy sets, in the late 
forties, Shackle [11] has introduced the connection between 
confidence intervals and the measurement of possibility in 
his theory of potential surprise, which is a first draft of 
possibility theory. McCain [12] also independently pointed 
out that a fuzzy interval models a nested set of confidence 
intervals with a continuum of confidence levels. The idea of 
relating fuzzy sets to nested  confidence sets via a 
probability-possibility transformation was proposed by 
Dubois and Prade [9]. Doing so, it is clear that some 
information is lost (since an imprecise probability is 
obtained). However it may supply a nested family of 
confidence intervals instead of a single one. The guiding 
principle for this transformation is to minimise 
informational loss. The corresponding transformation has 
already been proposed in the past [9][13][14]. More recent 
results have been obtained by Lasserre, Mauris et al. [15] 
[16] and applied to the problem of representing physical 
measurements associated to a symmetric distribution.  

This paper further explores the connection between this 
probability-possibility transformation, confidence intervals 
and the concepts developed in the ISO guide for the 
expression of uncertainty in measurement, as explained in 
section 2. In the third section, we apply the proposed 
probability possibility transformation to asymmetric 
probability distributions. Some concluding remarks  points 
out the interest of the approach and some perspectives. 
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2.  PROBABILITY VERSUS POSSIBILITY 
UNCERTAINTY REPRESENTATIONS 

 
2.1.  Basics of probability and possibility theories 
Possibility measures are set functions similar to 

probability measures, but they rely on an axiom which only 
involves the operation “ maximum ” instead of the 
“addition” [17][18]. A possibility measure Π on a finite set 
X is characterised by a possibility distribution π : X → [0,1] 
such that : 

∀ A ⊆ X, Π(A) = sup{π(x), x ∈ A}.    (1) 
To ensure Π(X) = 1, a normalization condition demands 

that π(x) = 1, for some x ∈ X 
A numerical possibility distribution π: R → [0,1] is 

called a fuzzy interval as soon as its α-cuts Aα = {x, π(x) ≥ 
α} are (closed) intervals. When the modal value of π (i.e. x* 
is such that π(x*) = 1), it is also called a fuzzy number. 
Then, if π is continuous, N(Aα) = 1 – α, ∀α ∈ (0, 1], and  

π(x) = sup {Π((Aα)c), x ∈ Aα}. 
As it turns out, a numerical possibility measure can also 

be viewed as an upper probability function [19]. Formally, 
such a real-valued possibility measure Π is equivalent to the 
family P(Π) of probability measures such that P(Π) = {P, 
∀A ⊆ X, P(A) ≤ Π(A)}. 

 
2.2.  Confidence intervals 
Let p be a unimodal probability density and x* be a 

“one-point” estimation of the “true” value, for example the 
mode or the mean value of the probability density. An 
interval is defined around the “one-point” estimation, and its 
confidence level corresponds to the probability that this 
interval contains the “true” value. For a confidence level 
α, such an interval, denoted I*

α is called a confidence 
interval, and its confidence level is P(I*

α)  = α (95%, 99% 
are values often used in the measurement area); 1 −  P(I*

α) is 
the risk level, that is, the probability for the real value to be 
outside the interval. In the following,  a family of such 
confidence intervals supposed to be closed, is assumed to be 
given. 

 
2.3.  Possibility representation of confidence intervals 
Definition 1: A fuzzy uncertainty interval around x* 

(denoted π*) representing the continuous probability density 
p is the possibility distribution defined by identifying each 
α-cut of π* with each closed confidence interval I*

α of 
confidence level α around the nominal value x* computed 
from p.  

According to the definition, a possibility measure  Π* 

and its distribution π* can be defined as follows:  
Π*((I*

α)c) = 1 − P(I*
α)   (=1 − α),  

π*(x) =sup {1 − α , x ∈ I*
α}.   (2) 

 
The possibility distribution π* is continuous and 

encodes the whole set of confidence intervals in its 
membership function. It can be proved that indeed p ∈ 
P(Π*).  

 

Theorem 1: For any probability density p, the possibility 
distribution π* in Definition 1 dominates p, that is: ∀A 
measurable, Π*(A) ≥ P(A), Π* and P being the possibility 
and probability measures associated respectively to π* and 
p. 
Proof : For any measurable set A ⊆ R, define the set C = {x 
∈ R, π*(x) ≤ Π*(A)}. Obviously, A ⊆ C, because ∀A 
measurable, Π*(A) = supx ∈ A π*(x) = Π*(C). Now, P(C) = 
Π*(A). Indeed Cc is the cut of level Π*(A) of π*, therefore, 
P(Cc) = 1 − Π*(A), due to definition 1. Finally, Π*(A) ≥ P(A) 
since A ⊆ C. 
 

In the sequel, we show that ensuring the preservation of 
the maximal amount of information in π* can motivate the 
choice of the nominal value as the mode xm of the 
probability density. This is justified by the following lemma. 
In this lemma, the length of a measurable subset of the reals 
is its Lebesgue measure. 
 
Lemma 1: For any continuous probability density p having 
a finite number of modes, any minimal length measurable 
subset I of the real line such that P(I) = α ∈ (0, 1], is of the 
form {x, p(x) ≥ β} for some β ∈ [0, pmax] where pmax = 
supx p(x). It thus contains the modal value(s) of p. 
Proof  : Let I = {x, p(x) ≥ β}. I is a closed interval or a finite 
union thereof. Assume that there exists another measurable 
subset J of R such that P(J) = P(I) with length(J) < 
length(I). Considering the three following disjoint domains 
of R: I∩J, I\J and J\I, we find that since P(J) = P(I) by 
assumption: P(J) – P(I) = ∫I\J p(x)dx – ∫J\I p(x)dx. Now, for x 
∈ I\J, p(x) ≥ β, and for x ∈ J\I, p(x) < β,, therefore:  ∫I\J dx = 
length(I\J) ≤ ∫J\Idx = length(J\I). Hence, length(I\J) + 
length(I∩J) = length(I)≤ length(J\I) + length(I∩J) = 
length(J) which contradicts the assumption.  
 

Note: the lemma 1 can be easily extended to continuous 
probability distributions of Rd by replacing in the above 
proof the length by the Lebesgue measure on Rd, i.e the 
hyper-volume. 
 
This lemma has been proved in [20] for unimodal 

probability densities. Here, the proof is valid for any 
continuous probability density with a finite number of 
modes. However the unicity of the minimal length set Iα 
such that P(Iα) = α ∈ (0, 1]  is not always ensured. It exists 
for unimodal continuous probability densities with no range 
of constant value. It is also obvious from lemma 1 that for 
any confidence level α, the smallest sets Iα such that P(Iα) = 
α ∈ (0, 1]  are nested. The lemma proves that these most 
informative confidence sets are cuts of the probability 
density. The corresponding possibility distribution is 
denoted πxm and πxm(x) = sup {1 – α, x ∈ Iα}. 
 
Since the minimal length sets Iα contain the modal values of 
p, i.e. xm such that p(xm) = pmax, whatever the probability 
density, it gives a justification for choosing x* = xm and 
building the confidence intervals around modal values even 
for asymmetrical or multi-modal densities. Choosing 
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confidence sets of minimal length ensures that this 
possibility distribution will be maximally specific. The 
degree of imprecision of π is defined by ∫R π(y)dy = ∫[a, b] 
π(y)dy (if [a, b]  is the support of the unimodal density p). It 
is also equal, due to Fubini's theorem, to ∫[0, 1] length(Aα)dα. 
Thus, minimising the size of the cuts of π dominating p 
comes down to minimising the imprecision of π. 
 

This theorem and this lemma has been applied in [20] to 
symmetric distributions. Hereafter, the asymmetric case is 
considered. 

 
3.  POSSIBILITY EQUIVALENT OF ASYMMETRIC 

PROBABILITY DISTRIBUTIONS 
 

A closed form expression of the possibility distribution 
induced by confidence intervals around the mode  x* = xm is 
obtained for unimodal continuous probability densities 
strictly increasing on the left and decreasing on the right of 
xm by : 

∀ x ∈ [–∞, xm], πxm(x) = πxm (f(x)) = ∫(–∞, x] p(y)dy + 
∫(f(x), +∞] p(y)dy   (3) 

 
where f is the mapping defined by: ∀ x ∈ [–∞, xm], f(x) = 
y ≥ xm such that p(x) = p(y). The function f is continuous and 
strictly decreasing, therefore a one-to-one mapping, and 
from (3) is clear that is πxm is continuous too, and even 
differentiable, since p is continuous. 
 
If p is symmetric with mode xm, then the possibility 
distribution πxm(x) is then easily defined as : 
∀ x ∈ [–∞, xm], πxm(x) = πxm(2xm −  x) = 1 – P([x, 2xm −  x]) 
 
For asymmetric distributions, (3) cannot be reduced and has 
to be computed in two parts. Let us consider a situation 
proposed in the ISO guide concerning the measurement of a 
vertical fixed height h of a liquid column in a manometer. 
The measurement system axis can shift from the vertical of 
a small angle β. The determined distance l will be always 
superior to h, because l=hcosβ. If we introduce d=1-cosβ, 
we obtain h=l(1-d). If the angle is small we have: 
p(d)=(1/σ√πd)exp(-d/σ2) with d>0. 
 
The equivalent possibility distribution obtained by the 
formula (3) is plotted in the following figure for σ=1. 
 

 
 

Fig1. Example of an asymmetric distribution 

In [20], it is demonstrated that the triangular possibility 
distribution is an optimal transform of the uniform 
probability distribution and it is the upper envelope of all the 
possibility distributions transformed from symmetric 
probability densities with the same support. Unfortunately 
this result does not carry over to asymmetric distributions. 
 
Counter-example: let us consider for example the 
piecewise linear probability density of support [−2, +2] 
defined by : 
∀x ∈ [−2, −1.5], p(x) = 0.6x + 1.2,  
∀x ∈ [−1.5, 0] p(x) = (0.2/3)x +0.4 ,  
∀x ∈ [0, 2], p(x) = −0.2x + 0.4.  
 
A piece-wise parabolic possibility distribution is obtained by 
applying equation (3) (see figure 1). It gives  πxm(−1.5) = 0.3 
> πtriangle(−1.5)=0.25. 
 

 
Fig2. Example of asymmetric distribution not dominated by the 

asymmetric triangular one 
 

4.  CONCLUSION 
 
This paper has proposed a systematic approach for the 

transformation of a continuous probability distribution into a 
maximally specific possibility distribution that enables 
upper bounds of probabilities of events to be computed. The 
obtained possibility distribution encodes a nested family of 
tightest confidence intervals around the mode of the 
statistical distribution considered. Applied to asymmetric 
densities, this result provides an original way of representing 
them by a possibility approach. 

 
This approach  will help for the uncertainty propagation  

represented by symmetric distributions because operations 
like division do not preserve the symmetry of distributions.  
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