
XVII IMEKO World Congress
Metrology in the 3rd Millennium

June 22−27, 2003, Dubrovnik, Croatia

SOFTWARE DEVELOPMENT FOR ADC TESTS

Jiri Brossmann, Jaroslav Roztocil, Vojtech Ruml, Dusan Varga

Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic

Abstract - Object based universal software system for
ADC testing which enables an easy programmer’s access
and expansion (update) is introduced in this paper. The basic
idea of the object oriented design and some aspects of the
software solution of the ADC testing are described.

Keywords: ADC testing, software development, object

oriented programming

1. INTRODUCTION

At present, ADC tests are based on commonly accepted
standards as [1] and [2]. These tests are usually performed
by closed programs [3] or scripts and libraries tied together
with commercial products, for instance Matlab [4].

In case, the procedures (implemented in the test
described above) are updated and some devices in a
measurement chain changed, the design must be completely
rebuilt or rewritten in the more complicated way.

To avoid this conceptual problem, it was decided to
develop a new object based kind of software for ADC
dynamic testing, called DIGESTER II.

2. OBJECT ORIENTED DESIGN

The basic idea of the DIGESTER's object oriented design
is to simplify a development and usage of real-world objects
(see Fig. 1) in a software abstraction by the implementation
of the specific tests (i.e. some abstract algorithms that

describe how to provide specific tasks). There are several
groups (or classes) of objects: measurement instruments,
data containers, data processors etc. which might be
converted into any software modules for the simulation of
basic behaviour of the real objects, or into some sort of
interface between software and hardware.

The real objects often overlap the unambiguous classes
(a digital oscilloscope works as both, the sampling or storing
device). It allows a programmer implementing the
ambiguous drivers that fully describe the chosen
instruments. The usage of this approach is not worth in
general because of the variation of instruments for the
performance of the same tasks (the different types of digital
oscilloscopes require different ways to handle the stored
data) that means the necessity of complete changing the test
design. Basically, there are two different ways such problem
to be avoided:
v to take into account all the possible configurations of

hardware and to consider all conditions to enable the
implementation of the test in all presumable situations;

v to increase the level of abstraction (a driver represents a
general instrument).

The second approach was used in a new design of the

DIGESTER. In case of the substitution of an instrument, there
is no need to change the test methods. The possible changes
are necessary in the setting of the instrument.

The following abstract classes were devised and used as

root classes for C++ implementation of DIGESTER:

i.e. IEEE 488.2

Software Implementation

Hardware Control Through Devices Interfaces

i.e. VXI E1430Ai.e. SRS DS 360

Signal Source

i.e. Notch @ 1 kHz

Filter Digitizer under
test

i.e. filter correction

Signal Processing
i.e. FFT

Testing method 1

i.e. Sine Wave Fit

Testing method 2

i.e. graphs, tables

Visualization

i.e. ASCII, BIN files

Results Saving

Fig. 1. Typical ADC chain testing setup

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

• instrument (a driver or simulation of a real device);
• container (an object intended to store the various kinds of

data);
• processor (an object for processing of the data stored in

containers);
• summary (an object for collecting the results of the tests

and for the final test report generalization).

The particular sub-classes are derived from these generic
classes (e.g. instrument is root class for sources, and then
arbitrary source is derived from source). On every level, the
most common attributes and functions are investigated.
When lowering the abstraction to the lowest level (i.e. to
real hardware), only a few additional functions must be
implemented, and some virtual methods are necessary to be
rewritten to accomplish the requirements of the device.

Another important part of the implementation is a
detection of the ancestors and descendants in the
implementation line. To include the processor in the
implementation line is useful just in case, it recognizes the
ascendant – descendant relations between containers.
This detection is provided by the usage of a special
component of every object, called descriptor. Every
descriptor contains information about its type (class). It is
referred as a string with every level of the abstraction
separated by a dot (e.g. "Container.Array.Integer" or
"Instrument.Source.Function.DS360").

At least, every object contains its programming interface
and attributes of its ancestor. It is possible to replace the
descendant with any object.

 The result of this design is a coherent set of objects,
which allows the user to implement tests generally, and
makes its changes easily.

2.1. Design concept

• Design is based on composition of complex parts from

existing simple elements.
• Elements structure is not based on algorithms but on the

data.
• Elements of designed structure have object representation.

There are data and set of operations allowed on data in the
object.

• Object in the program should correspond to an object in
the real world, like signal source, filter, etc.

• Objects in application cooperate, one object calls services
of the others or the object services are called from main
program.

• The program is transparent, easy to modify and consists of
simple operations.

The design of the system thoroughly benefits from the

formerly explained methods. For example,
GenericInstrument class consists of common properties
of all used devices like input and output impedance and
trigger settings. The GenericSource, GenericFilter and
GenericDigitizer classes present the next level of
abstraction of signal sources, analog filters and digitizers
from which the real instruments’ classes could be derived. If
there is some need to build the more complex instrument
driver in the plugin form, new classes could be created,
describing this instrument, or multiple inheritance could be
used.

All the methods in classes are declared as virtual, so
their functions can be redefined on any lower level. It is very

GenericInstrument

GenericSource

GenericDigitizer

GenericFilter

HarmonicSource

FunctionSource

ArbitrarySource

NoiseSource

DCSource

LowPassFilter

HighPassFilter

BandPassFilter

BandRejectionFilter

GenericSignal

IntegerSignal

FloatSignal

PeriodicSignal

SinusSignal

NoiseSignal

RampSignal

GenericProcessor

DFTProcessor

SineWaveFitProcessor

CorrelationProcessor

HistogramProcessor

INLProcessor

DNLProcessor

Fig. 2. DIGESTER II classes tree

E1430ADigitizer

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

easy to transfer required information between trees of
objects, in the designed object model.

The numeric data are stored in objects, for example
IntegerArray or FloatArray. To identify the source and
destination objects, simple pointers are assigned to these
objects. For example, a pointer to the IntegerArray object
is given to the objects, which are derived from
GenericDigitizer object, and acquired data are stored in the
field inside IntegerArray object. If an operation like DFT
calculation should be done, the only necessary operation is
to give the IntegerArray or FloatArray pointer to the
AmplitudeSpectrum object and to call its Execute
method. Using the same way, the data store is performed by
passing the data pointer to the DataStore object,
modifying a parameter to select a required file format and
call the Execute method.

Basically, there are two ways how to write the particular
implementation of the objects described above.

First approach: it is necessary for the user to know
completely the structure of an object before its first usage;
this means that the headers and import libraries must be
distributed with them, and inclusion into project is
performed during compilation, in C++.

Second approach introduces only limited application
programming interface (API), which defines its own, object
independent access to attributes and methods.

First approach results in modules, which are much easier
to implement, because the values passed into an object

might be type-checked, methods return desired values
directly etc. The second approach: while API is minimal
and as general as it is possible, its implementation is really
hard, brings the necessity to add temporary variables, limit
values, which may be passed in and out of the object.

The second way has been chosen, because it allows very
good automation possibilities, and creation of simple
system, which handles with objects.

After analysis of requirements and object-interface tests,
just only 10 API functions are used: PICreate (creates new
instance of object), PIDestroy (destroys instance of object),
PIInfo (returns object descriptor), PIStatus (returns last error
and current status of object), PIGetProcID (returns ID of
procedure, i.e. method), PIGetAttrID (returns ID of
attribute), PIProcedure (executes procedure), PIAttribute
(sets or reads value of attribute), PISave (saves object) and
PILoad (loads object).

The API installation is performed using the Win32
functions of the LoadLibrary and GetProcAddress. The first
one loads DLL library, the latter returns a pointer to the
appropriate function of the plugin interface.

API is exported as standard C functions, to allow the
usage of plugins in ANSI C programs.

2.2. Plugins

DIGESTER plugin is an encapsulated entity, which

implements methods like data acquisition, spectrum

 struct PI_API
 {
 PI_API_PICreate PICreate;
 PI_API_PIDestroy PIDestroy;
 PI_API_PIInfo PIInfo;
 PI_API_PIStatus PIStatus;
 PI_API_PIGetProcID PIGetProcID;
 PI_API_PIGetAttrID PIGetAttrID;
 PI_API_PIProcedure PIProcedure;
 PI_API_PIAttribute PIAttribute;
 PI_API_PISave PISave;
 PI_API_PILoad PILoad;

}

#define PI_INIT_API(nlib, hlib, apis) \
 HINSTANCE hlib;\
 PI_API apis;\
 hlib = LoadLibrary(nlib);\
 if (hlib != NULL) {\
 apis.PICreate = (PI_API_PICreate)GetProcAddress(hlib, "PICreate");\
 apis.PIDestroy = (PI_API_PIDestroy)GetProcAddress(hlib, "PIDestroy");\
 apis.PIInfo = (PI_API_PIInfo)GetProcAddress(hlib, "PIInfo");\
 apis.PIStatus = (PI_API_PIStatus)GetProcAddress(hlib, "PIStatus");\
 apis.PIGetProcID = (PI_API_PIGetProcID)GetProcAddress(hlib, "PIGetProcID");\
 apis.PIGetAttrID = (PI_API_PIGetAttrID)GetProcAddress(hlib, "PIGetAttrID");\
 apis.PIProcedure = (PI_API_PIProcedure)GetProcAddress(hlib, "PIProcedure");\
 apis.PIAttribute = (PI_API_PIAttribute) GetProcAddress(hlib, "PIAttribute");\
 apis.PISave = (PI_API_PISave)GetProcAddress(hlib, "PISave");\
 apis.PILoad = (PI_API_PILoad)GetProcAddress(hlib, "PILoad");\

 }

Fig. 3. Macro PI_INIT_API

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

calculation, and data store. These methods operate with the
internal plugin data, describing plugin state, called
attributes. The plugin is equipped with a standard API,
which allows the access to the internal methods and
attributes by unified way mentioned above. The access is
common for all the plugins.

DIGESTER plugin is realized as a dynamic linked library
(DLL), containing the application programming interface.
Input parameters of the API functions are strings
representing procedures and attributes, pointers to input or
output values, and handles pointing to a particular instance
of the object (each plugin might contain more than one
instances of its internal object, addressed by special value
filled by the PICreate function). It is possible to apply the
same operations on several different instances of the same
object by only the change of one input parameter.

The macro that loads the complete API by one command
facilitates the usage of the plugin (see Fig. 3). The following
code loads the GenericDigitizer plugin to memory:

PI_INIT_API ("GenericDigitizer.dll", handle_library,
 api_struct);

The API is very simple. When a new plugin (which does

not exist in the time of application building) for a new
device is added to the existing application, there is no need
to pass any special information to the application – plugin is
identified simple way and the user decides only about its
use.

The plugin can be easily recognized and with a special
request, all its methods and attributes, with their description,
could be read. There is no need for any previous information
about numbers and types of attributes.

The plugin enables the use of more instances of the same
internal object with only one parameter change. The internal
plugin object is a C++ code, which implements the plugin
methods and attributes. The API implementation and
implementation of methods, which provide instance
management, is partially separated from this object. The
support for these methods must be included in the internal
plugin object; therefore their calling is done by other
methods, which are not included in this object. Assigned
methods are exported in dynamic link libraries. Names of
these methods are the same for each plugin, so it is possible
to publish them the same way for all plugin.

2.3. Handles

When the plugin API is available, we need to distinguish

each instance of the plugin’s internal object. The instances
are dynamically created by the user (main program) requests
and their identifier is the pointer (called handle) to them.

This handle is the first parameter of all plugin API
methods and is stored in a list created for this reason. The
list enables an easy verification that given handle really
belongs to the plugin (i.e. to prevent illegal memory access).
The user must destroy a handle of an object after disposing
the object’s instance (using the PIDestroy function). It is
also possible to remove automatically all internal objects
from memory if the user did not remove them explicitly.

2.4. Examles of plugins

The GenericInstrument object is the basic class that

implements general attributes of an instrument. All classes
of real instruments are derived from this class. It does not
contain any executive code to do any settings, but only the
object mechanisms for implementing setting methods and
parameters in derived classes. Using inheritance, the
GenericDigitizer object is created (see Fig. 2). This object
implements the most important common attributes of
digitizers. The E1430Adigitizer object implements the real
driver for the HP E1430 VXI digitizer. Common attributes
and methods are defined in the parent classes
GenericInstrument and GenericDigitizer. The
E1430Adigitizer source codes are written using VISA
library.

3. DBASIC

As mentioned above, programming using plugin API is

very inconvenient. Thus a tool allowing simplification of
development process was necessary to create. After
discussing graphical interface, text -based simple
programming language has been chosen. DBasic is a very
simple, but fully featured programming language, specially
designed for an easy implementation of tests, using the
DIGESTER's plugins. DBasic is similar to the BASIC
languages. It allows the usage of complicated mathematical
and string operations, IF-THEN-ELSE conditions, FOR-
NEXT loops and subroutine calls. But the main strength
resides in the ability to cooperate with the plugins.

4. CONCLUSION

The DIGESTER II represents new generation of the

software system for ADC dynamic testing fully developed
and applied at our department. DIGESTER’s plugins can be
used either in C/C++ development environment (in form of
dynamic-link libraries with unified API) or in the DBasic
environment. The DBasic was created as the scripted
language to facilitate the manipulation with the plugins.

REFERENCES

[1] IEEE Std 1241-Draft, “Standard for Terminology and Test
Methods for Analog-to-Digital Converters”, Version May
1999.

[2] IEEE Std 1057-1994, “IEEE Standard for Digitizing
Waveform Recorders“. The Institute of Electrical and
Electronics Engineers, New York, 1994.

[3] J. Roztocil, J. Brossmann, “Software for Dynamic Testing of
Digitizers”. In Proc. RTUCET'01 Riga TU, October 2001,
vol. 1, pp. 95-98.

[4] I.Kollar, J.Markus, “Sinewave Test of ADC’s: Means for
International Comparison”. In Proc. IMEKO 2000, Vienna,
September 2000, Vol. X, pp. 211-216.

Authors : Ing. Jiri Brossmann, Assoc. Prof. Ing. Jaroslav Roztocil
CSc., Vojtech Ruml, Ing. Dusan Varga, Faculty of Electrical
Engineering, Czech Technical University, Technicka 2, CZ 166 27
Praha 6, Czech Republic. Phone: +420 224352869, fax: +420
224352876, e-mail: roztocil@fel.cvut.cz

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

	P496:
	Numb:
	Numbx:
	C: 920

	P497:
	Numb:
	Numbx:
	C: 921

	P498:
	Numb:
	Numbx:
	C: 922

	P499:
	Numb:
	Numbx:
	C: 923

