XVII IMEKO World Congress Metrology in the 3rd Millennium June 22−*27, 2003, Dubrovnik, Croatia*

DC & AC RESISTANCE MEASUREMENTS AT CENTER FOR MEASUREMENT STANDARDS

*Y. S. Ku, C. M. Hsu, H. L. Pang, L. J. Hsiao and Masakazu Nakanishi**

Center for Measurement Standards, ITRI, Hsinchu 30043, Taiwan, R. O. C.

*National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki, 305-8563, Japan

Abstract − Electrical unit of resistance maintained at the Center for Measurement Standards (CMS, Republic of China) is based on the second plateau of quantized Hall resistance, $R_H(2)$. Resistors are directly or indirectly compared with the $R_H(2)$. We report the procedure of the dc and ac resistance measurements at the CMS. Uncertainties associated to the measurements are also briefly reported.

Keywords: ac & dc resistance measurements, quantum Hall effect standard of resistance, CCC bridge, ac resistance ratio bridge

1. INTRODUCTION

Resistance standard maintained at the CMS is based on the $R_H(2)$ since 1996 [1][2]. Resistors are directly or indirectly compared with the $R_H(2)$ using a laboratory-made CCC bridge (resistance ratio bridge using a cryogenic current comparator), a commercially available DCC bridge (resistance ratio bridge using a direct current comparator, Measurement International, model 6010B, serial no. 93103), a laboratory-made AC bridge (ac resistance ratio bridge) and calculable ac/dc resistors (laboratory-made and commercially available quadrifilar 1 kΩ resistors).

We regularly calibrate the 1 Ω working standard resistor (Leed&Northrop, model 4210, serial no. 1915092) by comparing it with the $R_H(2)$ using the laboratory-made CCC bridge. Typical combined standard uncertainty of calibrating a 1 Ω resistor was evaluated to be about 1.2⋅10⁻⁸ [2]. We use the 1 Ω working standard and the commercially available DCC bridge to calibrate the customers' resistors. Typical combined standard uncertainty of the calibration was evaluated to be about $2·10^{-7}$ [2]. The calculable ac/dc 1 kΩ resistors are used to enhance the frequency range of the resistance measurements from dc to several 10 kHz. Their frequency dependences were calculated using the Gibbing's theory [3]. Resistances of the ac resistors are measured using the laboratory-made AC bridge. Typical combined standard uncertainty of each ac ratio measurement was evaluated to be less than $1 \cdot 10^{-7}$ [4][5].

Table 1 Evaluated uncertainties of resistance ratio measurements of $R_H(2)$:100Ω, 100Ω:1Ω and 10kΩ:100Ω. All parameters are listed in 10^9 .[2].

Fig. 1 Procedure of dc resistance measurements at CMS. The laboratory-made CCC bridge is usually used for measuring the 1 Ω working standard resistor. The commercially available DCC bridge (MI 6010B) is used for calibrating the customers' resistors and for calibrating the 1 Ω working standard resistor till the CCC bridge was developed.

2. DC RESISTANCE MEASUREMENTS

Figure 1 shows the procedure of the dc resistance measurement. Table 1 shows the evaluated standard uncertainties of the resistance ratio measurement [2].

A GaAs/AlGaAs heterostructure device made by LEP (Laboratoires d'Electronique Philips) was used as the QHE sample. It was installed in the 14 T superconducting magnet system with a ³He insert whose lowest temperature is 0.3 K. A 100 Ω transfer resistor (Tinsley, model 5685A, serial no. 260932) is directly compared with the $R_H(2)$ using the laboratory-made CCC bridge Typical combined standard uncertainty of the comparison is evaluated to be $4.8 \cdot 10^{-9}$ [2]. The 1 Ω working standard resistor is directly compared with the 100 Ω transfer resistor using the same CCC bridge with different settings. Typical combined standard uncertainty is evaluated to be $11·10⁻⁹$, including the instability of the 100 Ω transfer resistor [2]. Typical combined standard uncertainty of calibrating the 1 Ω working standard resistor was given as their root sum squares, $12 \cdot 10^{-9}$, since these two comparisons were independent of each other.

The customers' resistors are directly or indirectly compared with the 1 Ω working standard resistor using the DCC bridge (MI, 6010B). Uncertainty of the resistance ratio measurement using the DCC bridge was experimentally evaluated to be about 2.10^{-7} by comparing it with the CCC bridge [2].

Fig.2 Bifilar-type ac/dc calculable 1 kΩ resistor.

3. AC RESISTANCE MEASUREMENTS

Figure 2 shows the schematics of the laboratory-made quadrifilar type ac/dc calculable 1 kΩ resistor [4][5]. We also use the commercially available ac/dc calculable 1 kΩ resistor (NL Engineering). Their resistances are determined by comparing them with the 1 Ω working standard resistor using the DCC bridge. Their frequency dependences were calculated using the Gibbing's theory [3]. They are used for enhancing the frequency range of from dc to several 10 kHz.

We developed an AC bridge [4][5], whose operation was based on the coaxial AC bridge [6]. Ac resistance of the 10 k Ω and 100 k Ω resistors are determined by comparing them with the ac/dc calculable 1 kΩ resistor using the AC bridge.

Figure 3 shows the procedure of the ac resistance measurements and the evaluated uncertainties associated to each procedure.

dc	$1 \sim 20$ kHz	under development
$R_{\rm H}(2)$ CMS made CCC bridge (unc.: \sim 12 x 10 ⁻⁹) 1Ω working standard resistor DCC bridge $(MI\,6010B)$ $(unc.: \sim 2 \times 10^{-7})$ quadrifilar-type- or bifilar-type ac/dc calculable $1k\Omega$ resistor (unc.: $\sim 6 \times 10^{-9}$)	unc.: $1.9 \sim 7.0 \times 10^{-8}$ $(1kHz \sim 20kHz)$ $100k\Omega$ ac resistor ac resistance ratio bridge $(unc.: < 1 \times 10^{-1})$ $10k\Omega$ ac resistance ratio bridge ac resistor (unc.: $< 1 \times 10^{-7}$)	multi-frequency \Box lnF quadrature bridge ac capacitance ratio bridge 100pF ac capacitance ratio bridge 10pF ac capacitance ratio bridge 1pF

4. DISCUSSIONS AND CONCLUSION

We developed dc and ac resistance measurements systems, based on the $R_H(2)$, at CMS. We measure dc resistances of from $1Ω$ to 10 kΩ resistors with uncertainties of about $12 \cdot 10^{-9}$ when we use the CCC bridge, and with uncertainties of about 2.10^{-7} when we use the DCC bridge. We measure the ac resistances of the 1k Ω , 10k Ω and 100 k Ω resistors with uncertainty of a few parts in 10⁷.

We are developing a multi-frequency quadrature bridge, which is modified from that developed by Nakamura [7]. We are also developing an ac capacitance ratio bridge [6]. We will use these bridges to measure capacitors of from 1 pF to 1 nF.

REFERENCES

- [1] Y. S. Ku, Jimmy C. M. Hsu, H. L. Pang and J. C. Hsiao, " The Quantum Hall Resistance Standard at CMS," *CPEM digest*, pp.345-346, 1998.
- [2] Y. S. Ku, Masakazu Nakanishi, " Quantum Hall Resistance Standard at CMS and its evaluation," submitted to *IEEE Trans. Instrum. Meas*
- [3] D. L. Gibbings, "A Design for Resistors of Calculable a.c./d.c. resistance ratio," *Proceedings I.E.E,* vol. 110 no. 2, pp.335-347, 1963
- [4] Y. S. Ku et al, "AC Resistance Ratio Bridge for Evaluation of Calculable AC/DC Resistors," *CPEM digest*, pp.342-343, 2002.
- [5] Y. S. Ku et al ," Development of the Calculable AC/DC Resistor and Evaluation of the AC Resistance Ratio Bridge," to be submitted to *IEEE Trans. Instrum. Meas.*
- [6] B. P. Kibble, G. H. Rayner, *Coaxial AC Bridges, Chapt 4,* Bristol, Adam Hilger Ltd. 1984.
- [7] Y. Nakamura et al, "A Multifrequency quadrature bridge for realization of the capacitance standard at ETL," IEEE Trans. Instrum Meas., vol.48, pp.351-355, 1999

Authors: Yi-sha Ku: researcher, electrical measurement laboratory, Center for Measurement Standards, No. 321, Sec.2, Kuang Fu rd., Hsinchu, Taiwan 30043. Fax: 886-3-5724952. Tel: 886-3-5732103.