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Abstract − A novel system for low frequency noise,
LFN, wafer-level (point probe) measurements and a method
of the system calibration with the thermal noise of
resistances are discussed. We also present some LFN data
on MOSFETs as an example of implementing the LFN
measurement technique for the device quality diagnostics.
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1.  INTRODUCTION

The signal to noise ratio is known to decrease with the
device miniaturization.  A continued reduction in their
dimensions will inevitably necessitate taking measures
towards the noise reduction. Studies of the LFN serve for
the diagnostics of the field effect and bipolar transistors,
MOSFETs and BJTs and provide indications for the device
improvement. In the MOSFETs the power spectral density,
PSD, of drain current, Id, fluctuations is routinely used for
evaluating the density of slow interface states, Nst, [1, 2],
which we shall briefly describe here as an illustration of the
operation of the programmable point probe noise measuring
system, 3PNMS, that we present in this paper.

2.  MEASUREMENT SET-UP

The renewed interest in the LFN measurements in
transistors is linked with the equipment development (e.g.
[3-5]).  The 3PNMS [5-7] is, to our knowledge, the first
LFN measurement system, which is both, fully
programmable and immune to computer-generated electrical
perturbations in the wafer-level (point probe) operation.

The system consists of a probe station, featuring four
floating coaxial point probes, mounted on XYZ stages of
micro-manipulators for device contacting, and the biasing
and data acquisition electronics system (Fig. 1). The
system’s electronics is comprised of a (i) computer,
equipped with an analogue-to-digital converter, ADC, card
and a universal digital-lines output card, and (ii) computer-
controlled current/voltage converter (I/V converter) whose
inputs can be remotely biased (Fig. 2.) [5-7]. Henceforth we

shall refer to the latter as a programmable biasing amplifier,
PBA.
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Fig. 1 Schematic diagram of the measurement set-up
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Fig. 2 Schematic diagram of the programmable biasing amplifier
(PBA)

Fig. 2 presents the simplified version of the PBA, with a
single input, for current measurements and DUT biasing.
For the transistor characterization, a two-input version of the
PBA was developed (PBA2). It features the biasing of two
inputs, 1 and 2 (e.g. for drain and gate connections) and
provides a current measurement in Input 1 alone [7]. The
both inputs are triaxial, with guard potential applied to their
inner shields (connected to the respective probe shells), in
order to reduce the cable leakage and their effective capacity
[8]. Input 2 provides Vg, with no current measured, whereas
Id, forced by the bias Vd, is measured in Input 1. The current
amplifier gain, GDC=Rf, is software-selected so as the
optimal device-noise/system-noise ratio is maintained, with
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Vout below the saturation value of the current amplifier. The
proper Rf value is selected using bi-stable relays whose state
is changed by digital signals, from a digital output PC card.

In the set-up the Cascade Microtech probes, installed on
XYZ manipulators are used. In order to eliminate effects of
external disturbances (such as mechanical shocks or EM
interferences), the probe station is placed on the anti-
vibration stone table and shielded. The shield ground and
the system common are electrically separated. A
considerable care has been taken to the cable layout in order
to eliminate the ground loop effects.

The data is stored by a National Instrument DSA4452
card [9] plugged in the computer. The card has four
analogue inputs, which serve for the alternative, AC, and
direct, DC, current measurements for monitoring the biasing
potentials applied to the terminals of the device under test
(DUT). Each input channel of the DSA4452 is
independently configured (e.g. its amplification, input range,
the data acquisition parameters are all software-controlled).

The application for controlling the measurement set-up
was developed using the National Instrument LabView
environment. The application controls the biasing of the
DUT, PBA’s gain, data acquisition and analyzing, including
results presentation and storage in text files.

The static characteristic measurement algorithm allows
for a variation of one of the biasing voltages (Vb for BJTs
and Vg for the FETs), leaving the bias on the second input
constant (Vc and Vd respectively). The DUT current is
measured for each biasing point on Input 1 of the PBA2.
The software enables computer control/monitoring of only
two values: one being the device bias voltage and the second
the current flowing through Input 1 of PBA2. The static
characteristic of the DUT is measured step-wise in a range
of biasing voltages defined by the user. The measured
characteristic is displayed in real-time on the application
panel’s graphical display. The noise measurement sub-
application can be activated at each biasing point used for
the static measurement.

The time-domain signal is digitized and then used for
calculating a Fourier-transform (using a fast Fourier
transform, FFT, algorithm). The averaged PSD function is
subsequently presented in a sub-application graphic display
and the PSD value at a selected frequency is returned and
sent to the result array, together with respective static data.
After finishing the measurement for a requested bias range,
the result array is automatically stored in a text file. The
single spectra for each biasing voltage can be also stored in
a text file for a further processing.

When used in the automatic measuring mode, the system
can store averaged PSD spectra of drain current fluctuations
at drain current range 10-10A<Id<10-4A, with a default
storage of PSD values SId, measured at an arbitrary selected
frequency, f0 (here 10Hz) in a text file, whose i-th line has
the following format (Vgi, Idi, SIdi, Gdci, Vd, f0).  The file can
be further used for determining the interface density of
defects responsible for the noise generation [1, 2].  The latter
involves extracting from the data the 1/f noise component,
by subtraction from SIdi the appropriate PSD values
measured at Id=0. No operator’s intervention is needed
during the LFN measurements, but the monitoring of Vd, Vg,

Id(Vg), and the spectra is provided in real time, via virtual
instrument panels.

Several series of tests were performed in order to
examine the systems reliability in noise measurements. The
tests comprised both, static and noise measurements on the
electronic elements, wire-bonded, and contacted on the
wafer. In Fig. 3 we present some data for the PSD
measurements taken on encapsulated and probe-contacted
MOS devices, originating from identical wafers. The noise
generation in the point probes proved to be negligible, as the
results obtained on encapsulated devices matched those
measured on their wafer-level counterparts.
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Fig. 3 The PSD of the drain current fluctuations vs drain current, Id,
taken on the wafer level (two transistors) and on an encapsulated

device

The system was calibrated with thermal noise of resistors
treated as reference. A schematic diagram of the calibration
circuit is  presented in Fig. 4.
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Fig. 4 The basic circuit diagram for calibrating the I/V converter
with a thermal noise

Neglecting the inherent noise of the operational
amplifier, the power spectral density of the input-referred
current noise is [10,11]

Sin = 4kT (1/Rf + 1/Rg), (1)
then the power spectral density of the output voltage is 

SVout = 4kTRf
2(1/Rf + 1/Rg). (2)

The calibration method was verified experimentally by
measurements of the output noise voltage for various values
of Rg (10kΩ to 100MΩ) and Rf (10kΩ to 100MΩ). Fig. 5
shows the measured and calculated with (2) values for each
pair of Rg and Rf. The analysis of the results allowed
evaluating the influence of the system’s inherent noise on
the measurements. 
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Fig. 5 The illustration of the system inherent noise influence on
calibration with thermal noise. Surface - calculated values (Eq.(2)),
mesh - experimental results for Rf (103 Ω to 108 Ω) on X axis and

Rg (108 Ω to 103 Ω) on Y axis

It was experimentally established that the inherent noise
influence on calibration results is lower than 5% for all
values od Rf for 100MΩ>Rg>10MΩ. 

3.  EXPERIMENTAL RESULTS AND DISCUSSION

The test devices were fabricated using a standard 50nm
nMOSFETs process. The description and characteristics of
the devices have been presented elsewhere (see [12,13] and
references therein).

Using the 3PNMS the static and noise measurement
were taken on devices for the drain current range from
10-10A to 10-4A at Vd=50mV. Using the FFT algorithm, the
power spectral density, PSD of the Id fluctuations was
calculated and its value for frequency f=10Hz was stored
with corresponding Id and gate voltage, Vg values for further
processing. Fig. 6 shows the PSD of Id fluctuations for four
thin gate oxide MOSFETs of the same type. As it can be
seen, the reproducibility of the results is satisfactory.
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Fig. 6 The power spectral density, SId of the Id fluctuations as a
function of the Id; devices tox=25Å, W=L=10µm

The SId can be expressed as [1,2],
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The first term in (2) represents the noise resulting from
mobility fluctuation
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where f is the frequency, αH is a Hooge parameter and Qi is
the inversion charge[2,14].

The second term in (2) represents the carrier number
fluctuation, ∆n noise. This component originates from the
fluctuations in the total number of carriers in the channel
and is defined as,
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where αc is a coefficient measuring the correlated ∆n-∆µ
noise, Cox is the electric capacity of the gate-drain capacitor,
µeff is the effective mobility, gm=∂Id/∂Vg is the
transconductance, obtained from an independent static
measurement and Svfbn represents the flat band potential
fluctuations,
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2
= , (5)

where Nst (in cm-2eV-1 units) is a surface density, per unit
energy, of slow trap centers assumed to be localized near the
Si-SiO2 interface. 

Finally, the last term in (2) represents the noise
generated by the access resistance fluctuations. 
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The contribution of each component of (2) into the total
noise of the device depends on the Id range. For low currents
the ∆µ component dominates. In a middle-value current
range the dominant is ∆n component, while for high current
(Id values close to saturation) the contribution of the access
resistance is considerable.

Using (2) the power spectral density of the 1/f noise
normalized by Id

2 was calculated. Several parameters needed
for the calculation were extracted from the static
measurement data. Subsequently the calculated data were
compared with those obtained from the measurements.
Some results of the calculation and the measurements are
compared in Fig. 7.

The solid line presents the best fit of the the calculated
values to the data. The data for Id>10-8A can be accounted
for by (4) and (5) with Nst ≈ 109/cm2eV. This value is typical
for good-quality Si/SiO2 interfaces.
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Fig. 7 Measurement (points) and simulation (line) data obtained on
a MOSFET with L=W=10µm and 25Å -thick gate oxide 

3.  CONCLUSIONS

In this paper we presented a novel computer-controlled,
fully programmable system adapted for wafer-level, point
probe LFN measurements. The system enables automatic
measurements of static and noise characteristics of the
microelectronics devices. The tests performed on various
devices showed that the implementation of the point probes
does not decrease the reliability of measurements. 

We have demonstrated that a computer-controlled, fully
programmable system for LFN measurements on a wafer–
level can be successfully used for the device characterization
with the LFN measurement techniques. In the MOSFETs,
the trap density can be extracted from the data in terms of
the existing model [1,2] of the LFN generation. The
automation of the measurements enables repetitive transistor
testing, providing a non-destructive, wafer-level method for
the interface trap density evaluation in the MOSFETs.
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