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Abstract −−−− This paper investigates the statistical 

properties of quantization noise. In particular, a theoretical 
model is discussed, which evaluates the power of 
quantization noise introduced by a memoryless Analog to 
Digital Converter (ADC) as a function of both the converted 
signal distribution and the ADC thresholds positioning. 
Expressions have also been derived to express the Integral 
Non-Linearity (INL) contribution to quantization noise 
power as an additive term, and to evaluate such a term with 
a simple formula. Simulation results that validate the 
proposed expression are provided. 
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1.  INTRODUCTION 
 

Analog to Digital (A/D) and Digital to Analog (D/A) 
converters are widely used in many modern fields of 
application, allowing to replace analog systems with digital 
high performance implementations. Modeling the behavior 
of A/D and D/A converters is important both for 
characterizing the performance of the converters themselves 
and for embedding such devices in real systems. The matter 
has been subject of several investigations, however the 
effects of ADC and DAC unidealities upon the properties of 
quantization noise have not been deeply investigated yet [1]. 
In particular, an additive, white, and uniformly distributed 
quantization noise is usually considered, whose power does 
not depend on the statistical properties of the input signal. 

However, such assumptions are not verified when the 
converter is affected by INL. This paper is focused on the 
effects of INL on the noise power of a memoryless A/D 
converter, fed with various kinds of stochastic signals. An 
exact model is discussed, which describes the quantization 
noise power as a function of both the input signal 
probability density function (pdf) and the transition levels of 
the quantizer [2][3]. The model is then extended to evaluate 
the effects of INL and input signal statistical properties. In 
particular, the INL effect is modeled as an additive 
contribution, extending the results presented in [4]. It is 
worth of notice that the noise power of a quantizer affected 
by INL may noticeably depend on the amplitude of the 
quantizer stimulus. As an exact model may lead to very 
complicated expressions, a simplified formula has been 
derived, which accurately describes the effects of INL on the 
noise power when the stimulus covers enough quantizer 

levels. This model has been applied to various stochastic 
stimuli, showing a very good agreement with simulation 
results. In particular, uniform, Gaussian and noisy sinewave 
inputs have been considered. 
 

2.  ANALYSIS RESULTS 
 

2a. Quantizer model 
The theoretical model, whose detailed derivation is 

shown in Appendix A, has been obtained by assuming that 
the quantizer thresholds define a partition of the real axis, 
and by evaluating the conditional error pdf in each of the 
partition subsets. Notice that such an approach does not 
need any particular hypothesis about the threshold 
positioning, and can be applied indifferently to uniform or 
non-uniform converters. In particular, it can be shown that 
quantization noise pdf can be expressed as: 
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where sk is the k-th quantizer decision threshold, yk is the 

k-th output level, fx(·) is the input signal pdf, and i(.) is the 
indicator function [2]. 

In this paper, an ideal uniform quantizer is considered, 
with infinite quantizer thresholds and quantization levels. 
Quantization noise power can be estimated by calculating 
the variance of the error, according to: 

 

∫
∞

∞−

= deefe ee )(22σ ,     (2) 

 
which leads to the following: 
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Figg. 1(a)-(b) report quantization noise power as a 

function of signal standard deviation σIN, normalized to ∆, 
for uniform and Gaussian input signals respectively. The 
error power is normalized to the error power σ0

2 of an 
uniform ADC fed with an uniformly distributed stimulus. As 
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it is well known, with very high accuracy we can assume 
σ0

2≅∆ 2/12. In all the considered situations the model shows 
a good agreement with simulation results. 

 
2b. Uniform quantizers affected by Integral Non-

Linearity 
The presented model can easily keep into account INL, 

by replacing the ideal decision threshold values in (3) with 
the ones affected by INL. In particular, the quantizer 
thresholds may be expressed as follows: 

 
,0 kkk inlss +=      (4) 

 
where s0k is the k-th ideal threshold and inlk is the offset 

caused by INL. 
By using (4), Eq. (3) can be further refined, obtaining an 

equivalent form in which the ideal noise power and the INL 
contributions appear as two distinct additive terms. In fact, 
the properties of the integral operator allow to obtain the 
following (see appendix B): 
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where N is the number of quantizer levels, σ0
2 is the 

noise power generated in absence of INL, and δinl is the INL 
contribution to quantization noise. This term has been 
evaluated for uniform, sinusoidal and Gaussian input 
signals. In particular, for a Gaussian stimulus, it results: 
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where erf(⋅) is the error function [5]. For a zero mean 

uniformly distributed stimulus, we have 
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where ∩ is the intersection operator. Finally, for a 

sinusoidal stimulus, it results 
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Figg. 2(a)-(b) report the noise power curves obtained in 

presence of INL for the considered input signals, normalized 
to ∆2/12, as a function of σIN/∆. In particular, both stimuli 
have been applied to an ADC affected by deterministic INL, 
where each inlk has been taken from a set of values 
uniformly distributed between -∆/2 and ∆/2. Again, it can be 
seen that the model shows a good agreement with simulation 
results. 

While the theoretical model provide very accurate 
results, it’s derivation and application may lead to very 
complicated closed form expressions, depending on the 
expression of the input signal pdf. This may easily happen in 
practical applications, where the quantizer stimulus is 
usually distorted or corrupted by noise. A typical case is the 
usage of dither [4][6]. Thus, by assuming that the input 

Fig 1: Quantization noise power, normalized to ∆2/12,
obtained in absence of INL for an uniformly distributed
input signal (a) and for a Gaussian distributed one (b). Dots
are simulation results, while the continuous line is obtained
by means of the theoretical model expressed by (3). 

Fig 2: Quantization noise power, normalized to ∆2/12,
obtained in presence of INL for an uniformly distributed
input signal (a) and for a Gaussian distributed one (b). Dots
are simulation results, while the continuous line is obtained
by means of the theoretical model expressed by (3) and (5).
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signal pdf fx(·) is almost constant in [s0k, s0k+ inlk], a 
simplified model has been introduced, expressed as follows: 
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By substituting Eq. (6) in Eq. (5), the noise power of a 
quantizer affected by INL may be expressed as: 
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It should be noticed that, for an uniformly distributed 

input signal whose dynamic range equals the ADC one, (5) 
and (6) reduce to the INL contribution reported in Eq. (A.8) 
of [4]. Figg. 3(a)-(b) show the results obtained by using (7) 
for both uniform and Gaussian input signals. It can be seen 
that, as far as the input signal excites a few quantizer levels, 
Eq.(7) shows a good agreement with simulation results. In 
order to analyze another situation of practical interest, a 
sinewave signal, affected by an additive dither uniformly 
distributed in [-∆/2, ∆/2], has been considered. Fig. 4 reports 
both simulation results and the value returned by Eq.(7), in 
which the signal pdf derived in [6] has been used. It can be 
seen that also in this case the simplified model (7) provide a 
very good accuracy. 
 

3.  CONCLUSIONS 
 

A theoretical exact model has been presented, which 
describes the quantization noise distribution and power of 
memoryless A/D converters as a function of both threshold 
spacing and input signal pdf. The model has been extended 
to keep into account the INL contribution to quantization 
noise power, which has been expressed as an additive term. 
A simplified model has been also proposed, which provides 
good results as far as the dynamic range is sufficiently larger 
than the quantizer step. The model has been applied to 
various input signals, including a noisy sinewave. 
 

APPENDIX A 
 

Quantizer error model 
Let us assume that sk is the k-th quantizer decision 

threshold, and yk is the k-th output level, such that 
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The quantizer decision thresholds define a partition of 

the real axis, given by 
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The quantizer error can be obtained as the difference 
between the quantizer input x, which may me modeled as a 
random variable with pdf fx(x), and the quantizer output y. 
By keeping in mind that the value of y depends on which 
interval Xk the input x belongs to, e|Xk that is the quantizer 
error conditioned to Xk, is given by: 
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where x|Xk is the input x conditioned to Xk, that is, x such 

that x∈ Xk Hence, the error pdf, conditioned to Xk, can be 
obtained as: 
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where P(Xk)=P(x∈ Xk). The unconditioned error pdf fe(e) 

can be obtained as [5] 
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where i(⋅) is the indicator function, which equals 1 if 

e∈ Ak and equals 0 if e∉ Ak. By inserting (A.3) in (A.4), Eq. 
(1) results. In particular, if the considered quantizer is 
uniform, it results that Ak=[-∆/2, ∆/2], regardless of k. 
Hence, (1) reduces to: 

 

Fig 3: Quantization noise power, normalized to ∆2/12, 
obtained in presence of INL for an uniformly distributed 
input signal (a) and for a Gaussian distributed one (b). Dots
are simulation results, while the continuous line is obtained
by means of the simplified theoretical model expressed by
(6). 

Fig 4: Quantization noise power, normalized to ∆2/12, 
obtained in presence of INL for an input signal consisting in 
a sinewave added to a dither, uniform in [-∆/2,∆/2]. Dots are 
simulation results, while the continuous line is obtained by 
means of the simplified theoretical model expressed by (6). 
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APPENDIX B 

Effects of Integral Non-Linearity on quantizer error power 
Let us express the quantizer thresholds affected by INL 

as: 
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where s0k is the k-th ideal threshold and inlk is the offset 

caused by INL. The effect of INL is to change the decision 
intervals Xk, which causes the quantizer to produce incorrect 
output levels. By assuming that |inlk|<∆/2, it can be shown 
that when INL is introduced, the quantization error can be 
expressed as 
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where e0 is the quantization error of a quantizer not 
affected by INL, eINL is the INL contribution to the error, 
sign(⋅) is the sign function and Ik=[min(sk,s0k), max(sk,s0k)] is 
the input interval where INL causes the quantizer to produce 
an incorrect output level. In fact, when inlk is positive, if x 
belongs to [s0k,sk], the quantizer output equals yk-1, rather 
than the correct value yk. Conversely, when inlk is negative, 
the quantizer output equals yk, rather than the correct value 
yk-1, only if x belongs to [sk,s0k]. Eq. (B.3) shows that the 
sign of eINL is always opposite to the sign of e0, and its 
magnitude is always ∆. The error power can be evaluated 
according to (2), which, by applying a change of variable, 
can be expressed in terms of the input x, obtaining 
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Eq. (B.5) can be expanded into 
 

,
22

0
2

INLINLee C++= σσσ      (B.6) 
 

where 2
0eσ is the error power of an ideal quantizer, given 

by (3), 2
INLσ is the power of the INL error, given by 
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and CINL is a cross power term, expressed as: 
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Notice that CINL is the correlation between the ideal error 

and the INL error. This term can be further developed by 
substituting the expressions for e0 and eINL, thus obtaining 
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Eq. (B.9) can be expanded into 
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where the properties of Ik and the sign function have 

been used to simplify the integral in (B.9). Finally, by 
inserting (B.7) and (B.10) in (B.6), the first addendum of the 
right part of (B.10) cancels 2

INLσ , and Eq. (5) is obtained. 
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