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Abstract – Performances of∆Σ modulators are evalu-
ated by applying a coherently sampled tone and by estimat-
ing powers of the in–band tones and noise. In particular, the
power of the shaped noise is usually estimated by subtract-
ing the evaluated input tone from the output data and by in-
tegrating the power spectral density estimated by means of
the periodogram. Although the coherency, the finite number
of processed samples induces spectral leaking of the wide–
band noise, thus affecting the noise power estimate. To cope
with such an issue, usually data are weighted by the Hanning
sequence. In this paper, the noise power estimation error in-
duced by the use of such window is investigated, and a crite-
rion for choosing the minimum number of samplesN which
bounds the relative leakage error within a specified maximum
value is explicitly given. Moreover, it is shown that, for any
N , such an error is negligible for modulator orders lower than
3. Higher order modulators require the use of a large number
of samples to bound the relative error of the noise power esti-
mate when high oversampling ratios are employed.

Keywords: Delta–Sigma spectrum, spectral leakage, Han-
ning window.

I. I NTRODUCTION

Figures of merit used for evaluating performances of∆Σ
modulators are based on the processing of the output data by
means of algorithms which estimate the powers of the tones
and of the shaped quantization noise in the band of inter-
est. In order to properly measure such quantities, usually
algorithms defined in the amplitude– or in the time–domain
are employed under coherent sampling conditions, as recom-
mended by the IEEE standards 1241 and 1057 and by the Eu-
ropean draft standard Dynad [1]-[3]. Whatever the adopted
estimation technique, because of the finite length of the ac-
quired samples, the spectral leakage of the shaped quantiza-
tion noise, which appears in the low frequency region also
when coherency is applied, affects the estimation of the corre-
sponding power [4]. To reduce the effect of this phenomenon,
the output bit–stream is usually weighted by a suitable se-
quence. The commonly employed window is the Hanning se-
quence, which has been demonstrated to be the optimal two–
term cosine window for reducing the spectral leakage of both

narrow– and wide–band components [4]. However, on the
basis of the modulator order and of the band of interest, the
employed window affects the accuracy of the estimates of the
shaped quantization noise power, especially when high over-
sampling ratios (OSRs) are employed.

In practical cases, thermal noise and non–idealities of the
components introduced by the fabrication process, represent
noise sources with a non–negligible in–band power with re-
spect to the quantization noise. In particular, the most critical
block is the first integrator loop, since noise sources intro-
duced by this stage experience the input signal transfer func-
tion. As a consequence, a certain number of trade-offs have
to be taken into account in order to achieve optimal perfor-
mance.

It is then useful analyze the theoretical limits on the es-
timation of the noise power induced by the spectral leakage
of the wide–band noise. In this paper, the error induced on
the Hanning windowed noise power estimate is investigated.
In particular, a criterion for choosing the minimum num-
ber of samples which guarantees the relative error estimation
bounded within a given maximum value is given. Moreover,
it is demonstrated that the Hanning sequence is the optimal
window only for modulator orders lower than three.

II. W IDE–BAND NOISE SPECTRAL LEAKING

The in–band output noise power of∆Σ modulators is of-
ten measured by integrating the averaged power spectral den-
sity (PSD), estimated by means of the periodogram, in the
normalized frequency interval[0, 1/2OSR[. Since the peri-
odogram is calculated using a finite number of acquired sam-
plesN , output data are usually weighted by a suitable win-
dow. By modeling the internal quantizer as an additive white
noise with zero–mean and variance equal toσ 2

e , the analyzed
output signal of an ideal modulator can then be written as:

yLw[n]
�
= yL[n]w[n] = (x[n − L] + qL[n])w[n], (1)

n = 0, ..., N − 1.

whereqL[·] is the quantization error of theL–th order shaped
modulator,x[·] is the input signal andw[·] is the employed
window sequence normalized to the square root of its energy
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value in order to bound the maximum value of the window
autocorrelation to 1.

Fig. 1(a) shows the periodogram,̂PqLw(fk), of a 1–bit
∆Σ converter assuming various modulator orders, as indi-
cated by the corresponding labels. Output data have been
windowed by the Hanning sequence, and the periodogram
has been evaluated on50 non–overlapped records, each of
lengthN = 210. Moreover, the discrete frequency axis,fk,
has been normalized to the modulator sampling frequency,
i.e. fk = k/N, k = 0, ..., N/2 − 1. Spectral leaking of
the wide–band component clearly manifests itself in the low–
frequency region for the fourth–order modulator, while lower
order modulators seem not to be affected by such a phe-
nomenon.

In order to quantify the error of the in–band power es-

timate, the PSD of the windowed shaped noiseqLw[·] �
=

qL[n]w[n], PqLw(f), has been calculated by applying a Dis-
crete Time Fourier Transform to its autocorrelation sequence
[5], as indicated in App. A, thus obtaining :

PqLw(f) = PqL(f) + EwqL(f), |f | < 0.5 (2)

wherePqL(f) = σ2
e22L sin2L(πf) is the PSD of theL–order

shaped quantization noise,f is the normalized frequency and
EwqL(f) is the contribution of the employed window. Such
a contribution has been calculated forL = 1, ..., 4 for the
Hanning window as reported in App. A, and the resulting ex-
pressions are:

Ewq1(f) � 2σ2
e
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Dash-bolded and bolded lines in Fig. 1(b) represent the
PSD functionsPqL(f) andPqLw(f), respectively, of a 1–bit
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Figure 1. PSD of the output noise of a 1–bit∆Σ modula-
tor windowed by the Hanning sequence, estimated by means of
the periodogram on50 non–overlapped data records each of length
N = 210 (a) and calculated by means of (2) (b). Bolded lines in
each figure refer to four different order–shapingL as indicated by
the corresponding labels. For comparison purposes, the magnitude
of PL(f) has been graphed in (b) with dash–bolded lines.

∆Σ modulator with a full–scale (FS) equal to 1 by assuming
the Hanning window of lengthN = 210, andL = 1, ..., 4, as
indicated by the corresponding labels.

For low frequency values, the PSD of each windowed
noise converges to a constant value,KHL, which can eas-
ily be calculated by means of (3)–(6) by considering that, for
small values off , cos(2πf) � 1, thus obtaining:

KH1 � 2σ2
e

π2

N2
, (7)

KH2 � 16
3

σ2
e

π4

N4
, (8)

KH3 = KH4 � 32
3

σ2
e

π4

N5
. (9)

It results that such constants values decrease the higherN

as shown in Fig. 2.
The frequency valuefthL for which the theoretical PSD

is equal toKHL, can be calculated by solving the identity
KHL = PqL(f) for L = 1, ..., 4 and by considering that, for
low frequency values,sin2L(πf) � (πf)2L, thus obtaining:

fth1 � 1
31/2

1
N

, (10)

fth2 � 1
31/4

1
N

, (11)
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Figure 2. Constant valuesKHL, expressed in dB, to which
the PSD of the Hanning windowed noise converge in the low
frequency region, as indicated by (7)–(9).

fth3 � 1
π1/3

1
63/8

1
N5/6

, (12)

fth4 � 1
π1/2

31/4

63/8

1
N5/8

. (13)

It should be noticed that for modulator orders lower than three
the spectral leakage phenomenon does not significantly af-
fect spectral estimation since, for anyN , none of the peri-
odogram bins lays in the frequency interval[0, f thL [. On the
other hand, the number of bins included in that interval for
the third and fourth order modulators depends onN , and is
respectively equal to0.35N 1/6 and0.38N 3/8, thus increas-
ing with N . It follows that the Hanning window sequence is
a suitable two–term cosine window only for modulator orders
lower than three.

By indicating withσ2
qL

andσ2
qLw

the in–band powers of
qL[·] andqLw[·], respectively, the relative error of the shaped

noise power estimation,εleakL

�
=
(
σ2

qLw
− σ2

qL

)
/σ2

qL
, in-

duced by the wide–band noise leakage phenomenon has been
calculated as reported in App. B and it is approximately equal
to:

εleak1 � 2
N2

OSR2, (14)

εleak2 � 40
3

1
N4

OSR4, (15)

εleak3 � 112
3

1
π4N5

OSR6, (16)

εleak4 � 48
1

π4N5
OSR8. (17)

It results that, for a givenOSR, the higher the number of
acquired samples, the lower the spectral leakage due to the
wide–band component.

Expressions (14)–(17) have been used for evaluating the
minimumN which boundsεleakL within a given maximum
valueεmax, thus obtaining:
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Figure 3. The minimum number of samplesN which satis-
fies (18)–(21), as indicated by the corresponding labels, when
εmax = 0.01, versusOSR .
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Fig. 3 shows the two–base logarithm of the minimumN

which satisfies (18)-(21) whenεmax = 1%, versus the two–
base logarithm ofOSR. Such a figure can be used for eval-
uating the minimum number of samples to be employed for
estimating the noise power of anL order modulator with a
relative error lower than or equal to0.01.

Thus, (18)–(21) can be employed for properly setting the
parameters of the algorithm test used for estimating, with a
given maximum relative error, the quantization noise power
of a∆Σ modulator with a specifiedOSR value.

III. C ONCLUSIONS

Spectral leakage of the wide–band components affects the
estimation of the in–band power of the∆Σ shaped quanti-
zation noise, also when coherent sampling applies. In order
to reduce such a phenomenon, output data are usually win-
dowed by the Hanning sequence, which is the optimum two–
term cosine window. In this paper, theoretical limits on the
spectral estimation of the Hanning windowed shaped noise
has been derived. In particular, the power spectral densities
of the Hanning windowed modulators output has been derived
for∆Σ orders lower than 5, and it has been demonstrated that
the Hanning sequence allows a good spectral estimation only
for modulator orders lower than 3. The spectral leakage phe-
nomenon modifies the low–frequency behavior of the PSD of
higher order modulator. As a consequence, the quantization
noise power estimation is affected by an error which increases
with the usedOSR and that can be reduced by employing a
large number of acquired samples. In this paper, it has been
indicated the criterion for choosing the minimum number of
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samplesN for keeping bounded the relative in–band noise
power error for each analyzed modulator order.

Appendix A

Derivation of expressions (2)–(6)

By indicating with Ru[·] the autocorrelation of the
sequence u[·] and with F{·} the Fourier Transform op-
erator, the PSD of a windowed L–th order noise is:

PqLw(f) = F{RqLw[m]} = (A.1)

= F{RqL [m]RwH [m]} =
= PqL(f) + F{RqL [m] (RwH [m]− 1)}

where RwH [·] is the aperiodic correlation sequence of the
normalized Hanning window which can be written as [4]:

RwH [m] =

=
2
3
− 2

3N
|m|+ 1

3N
cos
(
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N

|m|
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+
2
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(
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)
1− cos

(
2π
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) − cos
(

2π
N

)
2 sin

(
2π
N

)) sin
(
2π|m|

N

)
,

m = −(N − 1), ..., (N − 1) (A.2)

The autocorrelation of a white noise with zero–mean
and variance equal to σ2

e filtered by an L–th order mod-
ulator with L = 1, ..., 4, RqL [·], can be easily calcu-
lated, thus obtaining a 2L + 1 length sequence centered
in m = 0. By considering that RwH [m] = RwH [−m]
and that RwH [0] = 1, it results that the window cor-
relation terms involved in the calculus of RqLw[·] are
those defined for m = 1, ..., L. For such m values,
the approximations cos(α) � 1 − α2/2 + α4/24 and

sin(α) � α − α3/6 + α5/120, with α
�
= 2πm/OSR, ob-

tained by using a Taylor series expansion, hold true. By
substituting such expressions in (A.2), the following re-
sults:

RwH [1] � 1− 2
3

π2

N2
+

2
9

π4

N4
, (A.3)

RwH [2] � 1− 8
3

π2

N2
+

32
9

π4

N4
− 8

3
π4

N5
, (A.4)

RwH [3] � 1− 6
π2

N2
+ 18

π4

N4
− 64

3
π4

N5
, (A.5)

RwH [4] � 1− 32
3

π2

N2
+

512
9

π4

N4
− 272

3
π4

N5
.(A.6)

By substituting RqL [·] for L = 1, ..., 4 and (A.3)– (A.6)
in (A.1), (3)–(6) result.

Appendix B

Derivation of expressions (14)–(17)

σ2
qL

�
= 2

∫ 1/2OSR

0

PqL(f)df (B.1)

σ2
qLw

�
= 2

∫ 1/2OSR

0

PqLw(f)df =

= 2
∫ 1/2OSR

0

(PqL(f) + PqLw(f)) df.(B.2)

When high OSRs are employed, the approximations
sin(2πf) � 2πf and cos(2πf) � 1 holds true for fre-
quency values lower than or equal to 1/2OSR .

By substituting such expressions in PqL(f) and
PqLw(f), and by considering that the relative error of
the L–th order shaped noise power estimation is equal
to εleakL

�
=
(
σ2

qLw
− σ2

qL

)
/σ2

qL
, (14)–(17) result.
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