
XVII IMEKO World Congress
Metrology in the 3rd Millennium

June 22−27, 2003, Dubrovnik, Croatia

ENHANCEMENT OF A BLUETOOTH-BASED INSTRUMENT
WIRELESS INTERFACE

L. Ferrigno1, A. Pietrosanto2, A. Celano2

1DAEIMI, University of Cassino, Cassino Italy

2DIIIE, University of Salerno, Fisciano Italy

Abstract − The paper deals with the enhancement of a

Bluetooth-based interface for instrumentation, which has the
aim of satisfying the need of wireless connection today
arising in developing automatic measurement systems. The
interface improvements are widely described as for both
hardware and software components. Finally a complete
experimental test set allows conclusions to be drawn about
the interface performance.

ROK Module

BT to
Serial

Instrument Instrument Serial Port

R
S
2
3
2

ROK
module

Interface module

Fig.1. The previous serial to serial BT wireless instrumentation

interface

Keywords: instrumentation bus, wireless, Bluetooth.

1. INTRODUCTION

The traditional and consolidated idea (scheme) of automatic
measurement system takes its origin from the applications
which introduced the need of automation in measurements.
In the seventies the first automatic test equipments were
developed in electronic industry to reduce costs and to
improve reliability of circuit testing. Hereinafter automatic
measurement systems have been designed as a set of
electronic instruments connected to a computer via an
interface bus, and often constrained in rack and stack
structures allowing cable connection to be easily made.
Even though the field of application of automatic
measurement systems has been greatly widespread during
the successive decades, no significant innovations to the first
idea were proposed. Some proposals were aimed to reduce
dimensions of instruments and to increase data transfer rate
(IEEE 1155), others to satisfy industrial (field-bus) or
automotive (CAN bus) needs, but architectures are always
centred on the adopted standard interface bus. Moreover, in
every case the wirings among instruments impose a
closeness which depends on the single interface but cannot
be avoided. Recently LAN or WAN solutions have been
proposed to extend the area that can be covered by a
measurement station even over geographic distances. These
solutions, however, uses communication ways which are
characterized, either by not deterministic data transfer times
(Internet), or by high cost of wireless device (WAN).
This means that any of these solutions has been designed to
satisfy the need of short range (10 - 100 m), low cost,
wireless connections among general purpose measurement
instruments. These consideration led the authors to design a
BT communication channel based wireless instrumentation
interface, where both master and slave interface boards are

thought to be simply installed on the serial port of a PC and
of instruments respectively (Fig.1). This means that every
stand alone instrument equipped with a RS232 interface
could join other devices in the piconet and be controlled by
the PC, without any firmware modification. This solution
looks like economic, easy to install and general because its
hardware and software parts do not depend in any way on
instruments.
This first interface module was realized for measurement
instruments equipped with a RS232 serial port. This allows
the wireless connection in the BT piconet among RS232
instruments and a controller. The controller module is made
of a commercial BT dongle for serial or PCI PC port, while
the instrument module has been ad hoc designed and
realized. It is based on a microcontroller which implements
the RFCOMM and the HCI management, and creates a
double layer RS232 interface, the former toward a slave BT
module, the latter toward the measurement instrument (or
any other device) RS232 port.
In this way it is possible to use, easy and with low cost, the
BT technologies to create a wireless interface bus between
measurement instrument. Both master and slave BT
modules are connected to the RS232 ports of PC and
peripherals, respectively. The PC hosting the master BT
module works as Controller, while instruments back-fitted
with the slave BT modules are the peripherals. Device§
commands and data can be written to and read from each
peripheral by the controller.

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

Even if perfectly working with the same data transfer rate of
the wired serial connection, the wireless interface needs both
improvements and additional features or options: (i)
software trigger commands cannot be implemented yet; (ii)
not more than 300 bytes can be exchanged in a unique
solution with an instrument without causing memory and
stack problems to the slave interface module; iii) only seven
slaves can be active simultaneously; iv) a IEEE 488 version
of the slave interface module misses.
Some of the aforementioned limits of both master and slave
modules have been overcome in a new slave BT interface
module, which has been designed to be connected to the
IEEE-488 GPIB. Broadcast messages have been
implemented in both master and slave software to add a
software trigger option; the scatternet is allowed to be
realized, thus increasing the maximum number of devices
simultaneously active; the micro-controlled interface has
been featured with a 8Mbyte RAM to enlarge memory
stacks. In the paper the new IEEE-488 slave module is
presented and both hardware and software are described in
detail. Then, a test phase is carried out with the aim of
characterizing the wireless interface in a configuration
including both serial-RS232 and IEEE-488 instrumentation.

2. THE SLAVE BT-IEEE488 INTERFACE
MODULE

The hardware

The proposed BT- IEEE 488 interface module has the same
hardware organization of the BT-RS232 interface module: a
microcontroller based board has been designed to be
connected from one side to the IEEE 488 GPIB, and from
the other side with the RS232 serial port of a BT slave
module.
The Microchip PIC16f877 is the heart of the
microcontroller-based board. It is a low cost microcontroller
whose main characteristics are: a 20 MHz operating
frequency, 8 kbyte program ram, 33 I/O pins, two RS232
serial ports (one USART RS232 port, and one synchronous
port realized by using the Serial Peripheral Interface (SPI)
bus). An external 20 Mhz oscillator allows the
microcontroller to be used at its highest processing rate. In
order to allow the microcontroller based board to be
connected with the RS232 port of the slave BT module, an
interface driver (Maxim MAX232) converts the TTL

voltage level provided by the PIC microcontroller USART
to those required form the EIA RS232 standard. On the
other side, a compatible IEEE 488 interface port has been
realized. The transceivers for the 16 command and data line
of the IEEE 488 bus, have been realized using 16 digital I/O
pins of the microcontroller. In particular 8 pins have been
used to implement the IEEE 488 DIO0-7, 3 pins for the
handshake (lines NRFD, NDAC e DAV), 4 pins have been
used for the ATN, EOI, REN and IFC lines, and finally the
last pin has been reserved for the SRQ line. This last pin
allows IEEE488 devices to get the controller attention. In
this prototypal realization (Fig.2) the interface board looks
big, but the aim of the Authors, is to contain the final
version in a IEEE 488 connector package.

The software

The software kernel of the slave BT IEEE-488 interface
module has been designed to allow the module itself to
communicate with both a single IEEE 488 instrument, and a
group of IEEE 488 cable connected instruments. Its
architecture has been developed hypotizing that the BT
master be able to send broadcast commands to all the slave
BT modules present in the piconet. Consequently each slave
module must be able to recognize its address when a
command is sent by the master. Whether addressed it has to
operate consequently, else, no actions have to be taken on
receipt. In this framework, the slave module software was
organized as it follows:
i. At the startup, the microcontroller module fills an

internal table with information got by the IEEE 488
instruments connected with the module. At first the
microcontroller try to make a logical address list of the
connected IEEE 488 instruments. To do this, the
interface module sends sequentially a Selected Device
Clear to all the IEEE 488 possible logical addresses.
Only one device at time answer this command thus
allowing the interface module to collect all the logical
addresses of the GPIB active instruments. Then, the
microcontroller module sends an IEEE-488.2
identification query, in order to memorize instrument
type and manufacturer of 488.2 instruments.

ii. If a BT packet, transmitted by the master, is received
by the slave BT module, the microcontroller software
polls the two bytes which correspond to the PSM field
of the received L2CAP packet, as it will be described
in the next section. If the first PSM field is a \x1001
(packet directed only to IEEE 488 instruments) or if it
is a \x10EF (general purpose packet directed both to
RS232 and IEEE 488 instruments) the microcontroller
elaborates the received command, otherwise the packet
is neglected by the module.

Fig.2 The microcontroller –based board of the BT-IEEE 488

module.

iii. If the recievd L2CAP packet is a IEEE488 command,
the microcontroller software looks for the received
device address in its address list: if the received
address misses no actions are taken, otherwise the
following section starts.

iv. In order to interpret the received command the
microcontroller software investigates the first byte of
the payload of the received L2CAP packet. In this byte

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

seven IEEE 488 command have been codified. These
command are described in Tab.1. Once the right IEEE
488 command has been identified the interface module
translate it in terms of handshake and/or data line
driving. Particular care has been had for the transfer of
large amount of data on the wireless channel. Suppose
that a set of waveform points has to be acquired from a
scope, say 1 million points. If the scope uses two bytes
for each waveform point, 2 millions bytes have to be
transmitted on the wireless channel. The payload that
BT assigns to the user is composed by not more then
128 bytes; for this reason several BT packets are
necessary to complete the data transmission. The
problem is that both the slave interface module and the
master software must understand that all these packets
compose the same data transmission. To this aim, a
suitable software procedure has been adopted. When a
module starts a long data transmission, it sets true the
most significant bit of the second byte composing the
PSM register. This bit assumes the significance of
“wait for another packet”, and it is reset to false on the
last BT packet. By this way, any module is able to
reconstruct the whole data set.

a.

(c) The physical communication port is a real RS232 or
USB port present on the PC controller, where is connected
the master BT module.

3. THE MASTER SOFTWARE

Before describing the master software architecture, some
choices made to allow both RS232 and IEEE 488
instruments to be included in the same BT piconet have to
be underlined. The master only manages broadcast packets,
while the slaves send unicast packets toward the master.
This choice in the communication procedure was imposed
by the IEEE 488 structure, which allows the possibility that
the controller sends universal commands to all the devices
on the bus, while talkers can send data only toward
addressed devices. For this reason each BT packet is
allowed to reach always all the slave modules of the piconet;
as a consequence each slave interface module has to
understand whether the received packet was really directed

to it or not. As above mentioned the decision is made
considering the PSM field in the L2CAP sub-packet
composing baseband BT packets. The PSM field consists of
two bytes register that represents a BT multiplexer key
toward the higher protocol levels of the BT stack. The
values of the PSM register that allows reaching the higher
BT stack levels have been decided by the Special Interest
Group (SIG), when BT has been defined. For example to
activate a RFCOMM connection the value \x0003 has to be
chosen. The SIG allows all the odd PSM values greater than
\x1000 to be used for user defined applications. The choice
made in this project is to use the PSM hexadecimal code
1001 to select an IEEE 488 packet, the 1003 code to define
an RS232 packet and the hexadecimal 1005 code to select
an USB packet. Finally, the \x10EF code is used to define a
general packet that has to be directed to every instrument in
the piconet. Using this bus organization will be possible, in
the future, to implement also new communication levels, for
an example to add IEEE 1394 instruments to the wireless
bus. The realized master software module is composed by
the following parts:(a) the RS232 and IEEE 488 drivers, (b)
the virtual communication port management, (c) the
physical communication port management, (d) the
BlueDaemon daemon thread.
(a) The base principles of the realized RS232 driver have
been described in a previous work. As far as the IEEE 488
driver is concerned, the authors choose to define the same
function prototypes the National Instrument proposes for its
software. By this way a user that have already realized an
IEEE 488 software using the National Instrument functions
has only to rebuild its project excluding the National
Instrument libraries and including the realized BT software
libraries. After that, the user doesn’t see the BT bus, and his
realized measurement software will work as an IEEE 488
application. It is worth noting that linking both BT-RS232
and BT-IEEE 488 libraries the user can create a unique
software that controls both serial and parallel instruments.

Tab.1. The IEEE 488 functions implemented on the slave
interface modules

Command
Name

Corresponding Action

BT_SIC Interface Clear

BT_SRE0 Disable the remote status (Set the REN line to
false)

BT_SRE1 Enable the remote status (Set the REN line to
true)

BT_CMD Used from the controller to send an IEEE 488
command to a device (i.e. to address a device as
talker or listener)

BT_WRT Allows controller writing data to a device

BT_RD Allows controller reading data from a device

BT_GTS Set ATN to false and allows communication
between a talker and listeners

(b) Virtual communication ports substitute the physical
IEEE 488 or RS232 ports on the PC controller. In truth,
these ports exist on the operative system only as a set of user
defined registers where commands or messages sent to the
physicals IEEE 488 or RS232 ports are written.

(d) BlueDaemon is the software kernel resident on the PC
controller. The kernel of the realized master software
module is a daemon thread able: (i) to capture the messages
that RS232 and IEEE 488 based software exchange with the
serial and IEEE 488 busses, (ii) to create the BT packet and
(iii) to redirect these messages to the BT channel. These
operations are made without requiring any action to the user
that, after a configuration phase, sees on its PC the RS232
serial and IEEE 488 interface ports, as they were really
available on the PC. The realized daemon is able to manage
all the BT stack levels, and for these reason it can be used
also for general purpose software. In particular, the realized
kernel is able to send any BT command and manage the
events coming from the queried module.

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

4. CASE STUDIES ABOUT THE PROPOSED
WIRELESS INSTRUMENTATION BUS.

Master Bluetooth

BT N
module

Instrument
N° 5

BT 1
Module

Instrument
N° 2

Instrument N° 3
Instrument

N° 1
Inst rument

N° 4

Fig. 3. The connection realized in the second case study

In order to better describe the functionality of the

proposed interface, some possible wireless configurations
have been described and analyzed. In the first one, where the
measurement station is composed of a controller and some
IEEE 488 instruments, each instrument is connected with its
own BT slave module interface.
In this case, some situations were explored: if the bus is in
command mode (ATN = true) the master sends a broadcast
packet, which reaches all the BT slave modules present in
the piconet area. Now each slave analyzes the PSM register
in the L2CAP sub packet and, if it finds the hexadecimal
value 1001, recognizes the presence of a IEEE 488
command. Starting from this moment each BT slave
interface module decodes the received command and, if it
represents an addressed command, it searches the presence
of the logical IEEE 488 address of the connected instrument.
It is worth reminding that each BT slave interface module
knows the IEEE 488 logical address of the connected
instruments thanks to its start up routine. Successively, if the
controller changes to the data mode (ATN = false), only the
addressed interface modules analyze the received data
packet. If an instrument has to send data to the controller the
BT interface module, which has been addressed as talker
before, write its data in the first reserved odd time slot
assigned by the master module.
A last consideration has to be made about the IBGTS
function that triggers the communications among a talker
and listeners. Since different IEEE 488 instruments are
connected to different interface modules, only the slave BT
module connected with the talker instrument sends its data
to the master, when the IBGTS function is received. The
master module, in its turn, knows that the previous
command it has sent was the IBGTS command, and
transmits the received packet using a broadcast packet.
Consequently, the interface modules that recognize an own
listen addressed instruments will retain and process the
packet. The previous action can be made because each
interface module reserves on its RAM the three flag bits
shows on Tab. II. In particular, by using both the
OWN_TALK and the OTH_LIST flags, the interface
module knows that it has to send data to the master that
addresses the active listeners.

The second case study concerns a measurement station
formed by a controller and several IEEE 488 instruments
wire connected to the same BT slave interface module
As far as IEEE 488 commands sent by the controller are
concerned, this second case is equal to the first one. On the
contrary, substantial differences can be found when a data
has to be transmitted from a talker to some listeners. In this
case, it could be possible either that the talker and listeners
be wire connected to the same BT slave module or not.
Considering the schematics reported in Fig.4, supposing that
the instrument N°1 has been addressed as talker and the
instruments N°2 and 4 as listeners. The BT1 slave module
knows that a talker and a listener are connected to it and that
there is almost another listener on a different slave module
thanks to the previous mentioned flags. In particular, by
using the address table it built in the start up phase, it knows
also the address of the IEEE 488 instrument connected to it.
The data transmission goes on in the following way:
(i) When the ATN line goes to zero, the talker instrument
puts its data on the GPIB bus;
(ii) The IEEE instrument N°2 takes these data because it is
wire connected to the talker an therefore the handshake
procedure can happen;
(iii) The slave module reset the OWN_LIST and
OWN_TALK flags and sends the data to the master.
(iv) The master resends the data packet using a broadcast
communication.
(vi) The arrived packet is processed by the BT2 module,
which has the OWN_LIST at the true value, and is not
considered from the BT1 interface module that has the same
flag at the false value; (vii) When ATN becomes true again,
every BT slave interface resets the three considered flags.

Tab. II Description of the flow control flag bits used

 Flag Name Description

1 OWN_LIST There is almost a listen addressed
instrument on the IEEE 488 bus
subsection connected to the interface
module

2 OWN_TALK There is almost a listen addressed
instrument on the IEEE 488 bus
subsection connected to the interface
module

3 OTH_LIST There is almost a listen addressed
instrument on another IEEE 488 bus
subsection controlled by a different
slave module

In the third case study, the measurement station is formed by
a controller, several RS232 instruments, and several IEEE
488 instruments connected to separate BT slave interface
modules. This scenario is the great novelty of the realized
wireless instrumentation bus: the possibility to create a
communication link between IEEE488 and RS232
instruments. Differences respect to the others cases can be
reassumed as follows:
(i) The master software module creates a virtual com port
for each serial instrument (BT to serial interface board)
present on the piconet area. The master software module
uses also the \x1003 and \x10EFcode in the PSM register to
indicate the presence of serial or general purpose packets

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

The master puts at the beginning of the L2CAP packet the
address of the serial BT module to connect.
(ii) If the PSM code is \x1003, the slave interface module
reads in BT address value at the beginning of the L2CAP. If
its own BT address is recognized the data packet is passed to
the instrument.
(v) If a serial instrument has to communicate with the
master, the respective BT slave interface sends a unicast
packet to the master, which locates the BT address and
redirects the packet to the correct virtual COM port.

PERFORMANCE ANALYSIS AND CONCLUSIONS

In this section, the performance of the realized wireless
instrumentation bus is explored.
In particular, for both the BT RS232 serial and BT IEEE
488 interface some features have been analyzed. The results
are reported in Tab. III where the performance has been
compared with that obtainable by using the respective wired
busses.
As it is possible to see, the transfer rate is quite low if
compared with theoretical value of IEEE-488, but it is
competitive with wired serial busses. The bottle neck is
constituted by the instrument RS 232 port which in the best

case could be able to transmit and receive at 57600 baud.
Better performance will be achievable when the USB ports
of PC and instruments will be used instead of the RS232
ports.

Bluetooth Master

BT 488 Modul e

Str umento N° 2
Strumento N° 3

Strumento N° 1

 IEEE 488 BUS

BT serial
Module

Strumento
N° 4

RS 232
link

Fig. 4 The connection realized in the third case study

REFERENCES

[1] L. Ferrigno, A. Pietrosanto “A bluetooth-based proposal of

instrument wireless interface” IEEE International Symposium
Virtual and Intelligent Measurement Systems, 2002. pp 72-77

[2] P. Arpaia, A. Baccigalupi, A. Pietrosanto: "Performance
Optimization of VXI-Based Measurement Stations", IEEE
Trans. On Instrumentation and Measurement, Vol. 44, num. 3,
pp 828-831, June 1995.

[3] L. Angrisani, A. Pietrosanto: "Performance Comparison of
IEEE-488 and 1155 Based Measurement Stations", Atti del
VII IMEKO TC-4, pagg.634-638, Praga (Czeh Rep.), Sept.
1995.

[4] S.V. Wunnava, P. Hoo: "Remote instrumentation access and
control (RIAC) through internetworking", Proc. of IEEE
Southeastcon ’99, pagg.116-121, March 1999.

[5] M. Dunbar, "Plug-and-play sensors in wireless networks ",
IEEE Instrumentation & Measurement Magazine pp 19 – 23,
Volume: 4 Issue 1, March 2001.

[6] U. Bilstrup, P. A. Wiberg: "Bluetooth in industrial
environment", Proc. of 2000 IEEE Intern. Workshop On
Factory Communication Systems, pagg.239-246, Sept 2000.

[7] J.C. Haartsen: "The Bluetooth radio system", IEEE Personal
Communications, Vol.7, Issue 1, pagg. 28-36, Feb 2000.

[8] D. Famolari, P. Agrawal, "Architecture and performance of an
embedded IP Bluetooth personal area network", 2000 IEEE
International Conf. on Personal Wireless Communications,
pp75 – 79, NJ, USA, Dec. 2000.

Authors:

Luigi Ferrigno, DAEIMI, University of Cassino, Via G. di Biasio,
43, 03043 Cassino (FR), Italy, Phone: (39) 0776-299673, Fax: (39)
0776-299707, Email: ferrigno@unicas.it

Antonio Pietrosanto DIIIE, University of Salerno, Via Ponte don
Melillo, 84084 Fisciano (SA), Italy, Phone: (39) 089-964248, Fax:
(39) 089-964218 Email: apietrosanto@unisa.it

Tab. III Comparison between the proposed BT instrumentation bus and the major wired competitors

Considered Parameters BT to serial interface RS232
interface BT to IEEE 488 interface IEEE 488

interface

Type of connection Wireless Wired Wireless Wired

Maximum number of
connected instruments

1 for each interface module

Up to 255 interfaces modules
contemporaneously between

active and parked

1

20 for each interface module

Up to 255 interfaces modules
contemporaneously between

active and parker

20

Maximum distance from the
Controller/Master

100 m (10mW BT modules)

10 m (1mW BT modules)
20m

100 m (10mW BT modules)

10 m (1mW BT modules)
2

Maximum transfer rate toward
the instrument 57600kbs 115200 kbs 57600kbs 1 Mbs to 100

Mbs

Maximum transfer rate toward
the master 1 Mbs N/A 1 Mbs N/A

Bus Structure STAR None bus is
allowed

PARALLEL

(broadcast messages)
PARALLEL

Cost 50 USD 5USD 50USD 200 USD

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

	P157:
	Numb:
	Numbx:
	C: 581

	P158:
	Numb:
	Numbx:
	C: 582

	P159:
	Numb:
	Numbx:
	C: 583

	P160:
	Numb:
	Numbx:
	C: 584

	P161:
	Numb:
	Numbx:
	C: 585

