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Abstract – In this paper the conventional equally spaced
sampling technique for spectrum analysis is compared to an
asynchronous random sampling strategy, which has been
previously proposed by authors for other broadband digital
instrumentation. To this aim, two new approaches to the per-
formance analysis are exploited, both being characterised by
the fact that no classical DFT algorithms are applied. In the
first method, the analytical expression for the estimate of
signal harmonic components is defined as a direct approxi-
mation of the Fourier series coefficients and the parameters
that characterise the measurement accuracy associated with
the considered sampling strategy are deduced. Following the
second approach, the spectral component estimates are
treated as random variables, due to the presence in their op-
erative definition of unknown parameters that can be inter-
preted as stochastic. The expected value and variance are
deduced for each harmonic estimate, in order to compare the
properties of the two sampling strategies. Simulation results
are proposed in order to validate the theoretical findings,
showing an excellent agreement.

Keywords: spectrum analysis, equally spaced sampling,
random sampling, performance analysis.

1. INTRODUCTION

It is well known that the digital spectral analysis of a pe-
riodic signal can be carried out by windowing the sampled
signal and implicitly introducing its periodic repetition in
order to obtain a discrete spectrum [1,2,3,4]. In this paper,
the conventional equally spaced sampling technique for
spectrum analysis is compared to a random asynchronous
strategy, which has been introduced by the authors for a
digital power meter [5,6], a vector voltmeter [7] and a power
spectrum analyzer [8,9]. Two new different approaches are
exploited to this aim: the first one allows to directly deduce
the estimate of each spectral component by referring
uniquely to the Fourier series, without the need for the ap-
plication of the conventional Discrete Fourier Transform
(DFT), and to easily evaluate the different parameters which
characterize the spectrum analysis of a periodic signal as a
function of the sampling strategy and the adopted window:
bias, resolution, aliasing, leakage. Through this analysis the
conditions in which it is convenient to adopt either the
equally spaced or the random asynchronous sampling strat-

egy can be easily deduced.
Since in both equally spaced and random sampling

strategies the analytical expression of the harmonic esti-
mates depends on unknown parameters, another method has
been introduced by the authors, which treats such parame-
ters as random variables statistically characterised, follow-
ing the Bayesan approach [9,10], on the basis of a priori in-
formation. The statistical parameters associated with the
spectral component estimates, capable of quantifying the
properties of each sampling strategy, are deduced and evalu-
ated. Simulation results are then presented in order to vali-
date the theoretical findings.

2. DIRECT APPROACH TO SPECTRUM ANALYSIS

We consider the problem of measuring the spectral com-
ponents qX  of a periodic signal ( )tx  having a finite spec-
trum:

( ) ∑
+

−=

=
M

Mq

tqf
qXtx 1j2πe (1)

where 11 /1 Tf =  is the fundamental frequency and M the
practically finite maximum order of harmonics. According
to the Fourier series theory, the unknown spectral compo-
nents can be expressed in the form:
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where *
nn XX =−  if ( )tx  is real. In the digital implementa-

tion of a spectrum analyzer the integral in (2) must be neces-
sarily approximated by a finite sum of signal sampled values
each multiplied by the correspondent discrete periodic ex-
ponential signal:
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where 0p  is a positive integer which marks the centred
value of the sequence of 12 +N  samples and it  indicates a
generic sampling instant. Equation 3 represents an estimate
of the thn  spectral component due both to an observation

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4 



interval independent from the period of the input signal and
to a finite sum of sampled values of it. On the hypothesis of
an equally spaced sampling strategy it results:

τ+= si iTt (4)

where τ  is the unknown delay between the signal time ori-
gin and the sampling time generator, and sT  represents the
sampling rate; instead, when using the random sampling
strategy previously introduced by the authors [5] the sam-
pling instant is defined as follows:

( ) τ++= sii TYit (5)

where now sT  represents an “average” sampling rate while

iY  is a set of independent random variables whose prob-
ability density function is uniformly distributed between

2/1−  and 2/1+ .
By substituting (4) into (3), we obtain the estimate nX̂

in the hypothesis of an equally spaced sampling technique
(which we distinguish through the pedix ES):
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In fact it results:
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By defining the function:

( )( ) ( )[ ]
( )s

s
sES fT

fTNfTNW
sinc

12sinc12 +
=+ (8)

with ( ) 1fnqf −= , and substituting (7) into the second ex-
pression of (6), we obtain the last expression of (6). It is in-
teresting to observe that the function ( )( )sES fTNW 12 +  co-
incides with the Fourier Transform of the discrete rectangu-
lar window of 12 +N  values and it is known as Dirichlet
kernel [2,10]. It is periodic of period 1=sfT  (i.e. sff = )
with a maximum value equal to one for sfT  integer and,
within the first period beginning from zero, it is symmetric
with respect to 5.0=sfT  (i.e. 2/sff = ) and it is null for

( ) kfTN s =+12  (i.e. 
12 +

=
N
fkf s ), with k  an integer less

than 12 +N ; for 5.0=sfT  the absolute value of the func-
tion is equal to ( )12/1 +N . It is characterized by equal main
lobes, around the integer values of sfT , and side-lobes be-
tween the successive zeroes. The last but one expression of
(6) shows that the estimate of each spectral component of a
periodic signal sampled with a window can be obtained as
the sum of the contributions of all the original spectral com-

ponents each one multiplied by the correspondent value of
the Fourier Transform of the discrete window centred on the
considered spectral component (for example 1Mf−  in fig.1).
In order to separate adequately the contributions of spectral
components contiguous to the considered one, i.e. to obtain
an adequate resolution, it is necessary to impose a minimum
distance between the spectral components of the original
signal, i.e. 1f , greater than the half-width of the main lobe
of the Fourier transform of the discrete window, i.e.

( )12/1 +> Nff s . In other terms, the observation interval
( ) sTN 12 + , i.e. the width of the window, must be greater
than the period 1T  of the input signal. Further, due to the
periodicity of the function ( )( )sES fTNW 12 + , it is necessary
to avoid that the main lobes nearer to that one centred on the
estimated spectral component affect the contributions of the
most far spectral components of the signal; this phenomenon
is known as aliasing. To this end it is necessary to consider
the Fourier transform of the window centred on the spectral
component 1Mf−  (or, analogously, 1Mf+ ) and verify that
the successive (or, analogously, previous) main lobe does
not involve the most far spectral component 1Mf  (or, analo-
gously, 1Mf− ), as it is shown in fig.1. Because the period of
the function ESW  is ss Tf /1=  and the half width of the
main lobe is equal to ( )12/ +Nfs , it is therefore necessary

to impose ss f
N
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+
−< . The two con-

ditions, relative to resolution and aliasing, have the overall
effect to impose MN > , i.e. the number of samples must be
greater than the number of spectral components of the input
signal. Finally, the second term into the last expression of(6)
represents the contribution of the other components different
from the estimated one, phenomenon which is called

Fig.1. Absolute spectral components of a periodic signal with
3=M  (a) and Fourier transform of a discrete rectangular window

with 4=N  centred on 1Mf−  (b).
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leakage; theoretically it should be null, but it is different
from zero due to the presence of the side-lobes of the func-
tion ( )[ ]sES fTNW 12 +  whose absolute maximum amplitude
can be considered with acceptable approximation inversely
proportional to the number of samples of the window,

12 +N . The preceding treatment can be interpreted as the
sampling theorem relative to a periodic signal sampled when
a discrete rectangular window is used; it is important to ob-
serve that, also if the sampling theorem is satisfied, the
original signal cannot be reconstructed due to the presence
of the leakage. In fact, by substituting (6) into (1), the esti-
mate ( )txESˆ  of the input signal results:
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When the condition ( )12/1 += Nbff s , with b  an inte-
ger less than 12 +N , is satisfied, i.e. the sampling is syn-
chronous with the input signal because the ( )12 +N  samples
are taken in b  periods of the input signal, the function

( )( )[ ] ( )[ ]bnqWTfnqNW ESsES −=−+ 112  is always null ex-
cept for 12 +=− Nnq  where it assumes a value equal to
one (see (8)). In order to avoid this situation, which is
known as the aliasing effect, since the maximum value of

nq −  is M2 , we must impose that 122 +< NM , i.e.
MN ≥ . In conclusion, when both the conditions

( )12/1 += Nbff s  and MN ≥  are satisfied, the problem of
resolution is automatically overcome and the leakage is null;
in fact the positions of the spectral components different
from the estimated one coincide with the zeroes of the lobes
of the Dirichlet kernel and the second term in (9) becomes
null. Therefore the estimates ( )txESˆ  coincides with the
original signal.

When the sampling instant is instead random, defined
according to (5), by substituting this equation into (3) the
estimator nX̂ , which is distinguished through the pedix R,
becomes:
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Due to the vector of the random variables iY  the quan-

tity nRX̂  is a random variable itself; therefore, it can be char-
acterized by its expected value with respect to the vector of
 the random variables iY  and therefore the pedix Y  is intro-
duced:
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In fact, by recalling (7), taking into account that:
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we obtain the two last expressions of (11), where a weight-
ing function RW  has been defined as

( )( ) ( )[ ]ssR fTNsincfTNW 1212 +=+ (13)

and evaluated for ( ) 1fnqf −= . The function
( )( )sR fTNW 12 +  coincides with the Fourier Transform of

the continuous rectangular window of width ( ) sTN 12 + ; it is
characterized by a main lobe for 0=sfT  of width

( )12/2 += Nff s  and successive side-lobes of decreasing
amplitudes. The last but one expression of (11) shows that
the expected value of each spectral component of a periodic
signal randomly sampled and windowed can be obtained as
the sum of the contributions of all the original spectral com-
ponents each one multiplied by the correspondent value of
the Fourier Transform of the continuous rectangular window
centred on the estimated spectral component (for example

1Mf−  in fig.2). Also in this case, in order to separate ade-
quately the contributions of spectral components contiguous
to the considered one, i.e. to obtain an adequate resolution, it
is necessary to impose the condition ( )12/1 +> Nff s . In
other terms, the observation interval ( ) sTN 12 + , i.e. the
width of the window, must be greater than the period 1T  of
the input signal. Because the function ( )( )sR fTNW 12 +  is
not periodic, the aliasing effect in this case does not exist
unlike the equally spaced sampling strategy. Therefore the
condition relative to the resolution must be satisfied inde-
pendently by the number of spectral components of the input
signal. The leakage effects, due to the sidelobes of the win-
dow, is presents also in this sampling strategy; however its

Fig. 2. Absolute spectral components of a periodic signal with
3=M  (a) and Fourier transform of a continuous rectangular win-

dow with 3=N  centred on 1Mf−  (b).
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effect is decreasing moving away from the main lobe.
Therefore also in this case the original signal cannot be re-
constructed due to the leakage effect. In order to take into
account the variability of the estimator, by referring to (10)
we can introduce the mean square error defined as follows:
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The last passage is due to the well known property that the
square modulus of the sum is not greater than the sum of the
square modula of the addenda. This inequality shows that
the maximum mean square error is inversely proportional to
( )12/1 +N . In order to compare this result with the analo-

gous expression for the equally-spaced sampling strategy,
we can observe that it results:
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In the last passage we have supposed negligible the aliasing
effect and we have assumed constant the function

( )( )sES fTNW 12 + , nearly approximated by its central value
( )12/1 +N : in this case the mean square error is inversely

proportional to ( )212/1 +N  while in the random previous
case it was inversely proportional to ( )12/1 +N . Therefore
the proposed random strategy is characterized by the lack of
aliasing, but its mean square error is greater under the same
width of the window. In order to obtain the same mean
square error, a longer observation interval is then needed.

3. STATISTICAL APPROACH
TO SPECTRUM ANALYSIS

Since the estimate nRX̂  of (10) is a complex random

variable, its mean value { }nRX̂E  is given by:

                { } [ ]{ } [ ]{ }nRnRnR XXX ˆImjEˆReEˆE += (16)

due to the property of a linear operator; its mean square er-
ror, indeed, results:
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where we have introduced the variance defined as follows:
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Therefore the mean square error depends both on the differ-
ence of the mean value with respect to the theoretical value
(i.e. the bias) and the variability of the estimated value with

respect to its mean value. By considering (10) we can de-
duce:
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where in the last passage we have supposed that
( ) 112 1 >>+ sTfN  so that the correspondent sinc  function is
practically null for 'qq ≠ ; therefore only the spectral com-
ponents for 'qq =  must be taken into account.

It is interesting to observe that, both in (6) and (10), the
estimates of the spectral component are conditioned to a
particular value of the delay τ  and to the centred value 0p
of the sequence of 12 +N  samples [10,11]. The unknown
delay τ  between time origins of the signal and sampling
generators can be interpreted as a continuous random vari-
able, independent of the vector of the random variables { }iY
and uniformly distributed into a generic time interval

2/',2/' TT +− . In the same way, the unknown centred value

0p  of the considered sequence can be interpreted as a dis-
crete random variable uniformly distribute in a generic dis-
crete interval ( )mm +− , . In this hypothesis also the estimate
given by (6) becomes a random variable and its expected
value results:
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since in analogy to (12) and (7) we respectively have:
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In order to obtain a result independent of the measurement
occasion, it is necessary to consider the asymptotic expected
value of { }nESX̂E , i.e. for ∞→'T and/or ∞→m . From (20)
we deduce that this asymptotic expected value coincides
with nX  and it represents an unbiased estimator of the thn
spectral component:

{ } nnES XX =
→

ˆE (23)

Therefore it is convenient to consider, instead of a single
measurement result, where the leakage depends on the un-
known delay τ  and on the centred value 0p , the mean of
different measurements. Because the asymptotic bias is null,
the asymptotic mean square error coincides with the as-
ymptotic variance. It can be shown that this asymptotic vari-
ance results [10,11]:
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where we have introduced the weighting function
( )( )sES fTNH 12 +  which coincides, in this case, with the

squared Fourier Transform of the discrete rectangular win-
dow:

( )( ) ( )( )sESsES fTNWfTNH 1212 2 +=+ (25)

Also this weighting function ( )[ ]sES fTNH 12 +  is periodic of
period sf  and, within each period, assumes N2  zeroes. The
comments to (6) can now be repeated for the variance given
by (24) and the results are substantially the same [10]. In
particular the maximum amplitude of the central sidelobe is
( )212/1 +N ; therefore the contribution to the mean square

error of each spectral component depends on the squared
amplitude of each spectral component multiplied for a
quantity which in the worst case can be assumed approxi-
mately equal to ( )212/1 +N . This is the result previously
obtained with (15).

In analogy to the previous procedure, taking into account
(21) and (22) in the case of the random strategy defined by
(5), from (11) we obtain:
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Also in this case the asymptotic expected value coincides
with nX  and it is an unbiased estimate of the thn  spectral
component:
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ˆE (27)

Therefore the asymptotic mean square error is due uniquely
to the variance. Because analogously to (27) it results
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, we can deduce:
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It can also be shown that we can write:
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because τ  and 0p  are independent. In analogy to (21) and
(22) we obtain:
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When we consider the asymptotic value with respect to 'T
or m , all the terms with 'qq ≠  becomes null and therefore
it results:
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By substituting this expression into (27), by separating the
contribution for nq =  and by recalling (13) we obtain:
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where the weighting function RH  for the proposed random
strategy is defined as follows:
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with ( ) 1fnqf −=  and coincides with that deduced previ-
ously for the random sampling wattmeter [5]. For 0=f  it

results ( ) 10 =RH ; for 0≅f  it results [ ] 12 ≅sR fTW ; there-

fore we obtain ( )[ ] ( )[ ]sRsR fTNWfTNH 1212 2 +≅+ . Succes-

sively we approximately have 
[ ] ( )[ ]sR

sR fTNW
N

fTW
12

12
2

2

+≅
+

;

therefore the weighting function becomes a constant, func-
tion of the number of samples of the window:

( )[ ]
12

112
+

≅+
N

fTNH sR . Figure 3 shows the shape of the

weighting function ( )[ ]sR fTNH 12 +  as a function of sfT
and ( )12 +N . From this figure we can conclude that the
proposed random sampling does not introduce any band-
width limitation; therefore the bandwidth of the instrument
is limited uniquely by the S/H circuits adopted. It is impor-
tant to observe, in comparison with the equally spaced sam-
pling strategies, that the contribution to the mean square er-
ror of each spectral component can be deduced multiplying
the squared amplitude of the spectral component by
( )12/1 +N  in the proposed random sampling technique and

by a quantity which in the worst case can be assumed equal
to ( )212/1 +N  in the equally spaced sampling strategy.
Therefore this random technique, which is not limited in
bandwidth, requires a greater length of the window in order
to adequately reduce the leakage.
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Fig. 3. Shape of the weighting function ( )[ ]sR fTNH 12 +  for the
proposed random sampling strategy as a function with respect to

both sfT  and N.

Fig. 4. Comparison between the theoretical (continuous
line) and simulated (+) results of the asymptotic variance (32) rela-

tive to the fundamental spectral component
on the hypothesis of a random sampling strategy defined

according to (5) with ms  01.1=sT  and a signal
with two spectral components.

4. SIMULATED RESULTS

By considering 4=N  successive samples of the sum of
a sinusoidal and a cosinusoidal signals of unit amplitude re-
spectively at frequency 1f  and 12 f , by assuming a random-
sampling strategy defined according to (5) with

ms  01.1=sT , the asymptotic variance of the fundamental

(fig.4) was evaluated by considering 410  successive meas-
urements. The simulated results are practically coincident
with the theoretical ones and confirm that this sampling
strategy does not introduce any bandwidth limitation.

6. CONCLUSIONS

A new procedure, which allows to quantify all the errors
associated with the estimate of the spectral components of a
periodic signal through a finite number of its equally spaced

samples has been introduced, by referring uniquely to the
formulae of the Fourier series. It has been shown that the
number of samples in the time domain of the input signal
and the sampling frequency must be fixed in order to avoid
the aliasing effect and both to obtain an adequate resolution
and to reduce the leakage effect. The number of values of
the frequency spectrum associated to the finite sequence of
the input signal must instead be selected on the basis of the
amplitude and phase error which can be accepted.

The same procedure was applied to compare the equally
spaced sampling with a random one, in which the samples
are randomly selected, with uniform distribution, in equal
successive time intervals. It was shown that the aliasing ef-
fect is not present in this random sampling; however to ob-
tain the same leakage effect of the equally spaced sampling
a greater number of samples must be selected.

Successively, these two sampling techniques were stud-
ied by introducing a different approach, which is based on
the hypothesis of randomly selecting, on the basis of the
Bayesan approach, all the unknown parameters. The corre-
sponding asymptotic statistical parameters show that these
sampling strategies are unbiased and that the asymptotic
variance relative to each spectral component depends also
on the other spectral components weighted by a proper
function. Since such a weighting function is different for
each sampling strategy, it can be assumed as a parameter for
its characterisation. The simulated results confirm the valid-
ity of this assumption.
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