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Abstract — Possibilities of an error reduction of the
phase estimation with an interpolated discrete Fourier
transform (DFT) for the rectangular window are described.
Properties of interpolations are studied with respect to their
ability for correction systematic effects of the used window.
The correction is improved with considering the leakage
effect of the component spectrum. Uncertainties of the phase
estimations have been studied. The simulation and
experimental results are presented showing the effectiveness
in estimating the phase of the signal component.
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1. INTRODUCTION

To estimate parameters of the time depended signals,
containing any periodicity, it is most suitable to use the
frequency domain. The basic parameters of periodicity are:
frequency of the energy kernel f_, amplitude of the
frequency main lobe A, and phase ¢, i.e. the time

position of the signal structure [1]. The sampled analog
multi-frequency signal g(t) can be written as follows:

M

glkat), = 3 ASN(2r kAt +,) &)

m=0

Tones of the sampled signal do not always coincide with
the basic set of periodic components of the discrete Fourier
transformation. The position of the measurement component
6, between DFT coefficients G(i,,) and G(i,,+1)

surrounding the component can be estimated by means of
the interpolation [2-4]. In this paper we try to show a two-
point interpolation of the DFT also for improving the phase
estimation.

2. ANALY SIS OF THE DFT COEFFICIENTS

Using N samples of the signal (1), the DFT at the
spectra line i isgiven by:

G(i) = —lé éoAn[\N(i _0,)e" Wi +0,)e ] ()

where 6, is the signal frequency divided by the frequency
resolution of the time window Af =1/(NAt) and can be
written in two parts:

~05<6,,<05 ©)

0, —m_i 45
Af

where i is an integer value and the displacement term &,

is caused by the non-coherent sampling.

The DFT coefficients surrounding one component in the
signal are due to the short-range leakage contribution of the
window spectrum weighted by the amplitude of the
frequency component (from the first term in (2)) and the
long-range leakage contributions. For one component only,
the expression (2) can be reduced:

G(i)=—j %[W(i -6,)e" —~W(i+6,)e'] (4

If the function W(0) of window used is analytically

known, the parameters of the signal can be estimated. For
the rectangle window, the following equation is valid, where
the Dirichlet kernel isused [5]:

sin(z6)

_ N
~ Nsin(z6/N) © ®)

W (0)

The largest DFT coefficient, which is mostly composed
of the short-range leakage contribution of the investigated
component m, can be deduced from (4) and (5) using

a=7(N-1)/N and — j=e"?:

Gi )= Al sin(z(i,—6,)) Dj[a(ﬂm—im)ﬂpm,g] )
m 2 NSin(ﬂ'(im_em)/N)\.
S.in(ﬁ(.im +6.)) e—j[a(amqm)wm%] ©
Nsin(z (i, +6,,)/N)
The component phase ¢, is referred to the start point of

the window (not to the middle point [6]). Since N isusually
large N >>1 and considering (3), (6) can be rewritten:

G(l m) — i Sin(”(_ 5m )) ei[a(5m)+¢m*%} _ S n(”(2im + 5m )) eii[a(Zim+5m)+wm+g]

2| z(=4,) (2, +35,)
(7
Both, amplitude and phase have additional disturbing
components from the second part in (7):

{a(ﬁm)*’(/’m’%}

Gli,) =[Glin e
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If the displacement term is positive 05>, >0, than
the second largest DFT coefficient is G(i,, +1) and if the
displacement term is negative 0>4,,>-05, than the
second largest DFT coefficient is G(i,,—1) (Fig.1). The

difference of the coefficients surrounding the largest one
G(i,) gives wus the sign of displacement

s=sign(|G(i,, + 1) - |G(i,, —1)) . The largest side coefficient
can be expressed in common as.

Gli, +9)= Azn sin(z(s- 6, ))el[a(ﬂ'm’s)‘wn’g} _sin(z(2i, +5+5,)) eﬁ[atZimsw'm)wm

(s=38,) (2, +s+3,)

©)
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Glin, +5)=|G(i,, + s)|ej[ ] FAi,+s) (%)

ag[Giy +5)]= 0 + &5, =)= T F Aplin +35) (9b)

a)

b)
Fig. 1. Phasors diagrams for asingle component A, =1 ¢, = 7/3
and the rectangular window: &) 6,, =4,4; b) 6,, =36

3. PHASE ESTIMATION
In the first approximation, the second term in (7) and (9)

can be neglected and the phase of component can be
estimated by:

o =a0lBl, )| 7 20, % (10)
o =Bl + 9+ 1 F(s-5,)+ 2 (1D)

We can improve the estimation by considering the long-
range contributions, which have following properties:

Apliy) __Sn[Aply)] _ |AG) G5 (g,
A¢(i,+s)  sin[4e(i,,+s)] [G(i,,) 4G, +s)
|AG,) Gl +s) 2, +s+3, |G(i,+S)
A, +s) G 2n+5n (Gl
If i,>1 is large enough, we can equalize
|A(i,,)| = ]A(i,, + ) and (12) can be written as:

(13)

Ap(in) |Gl +s) _ 6n
Ap(i+s) [Gli,) s-6

m

; (s=0,)40(i,)=6,40(,, + s) (14)

The multiplication of (10) and (11) by the correction
(14) gives us estimation of the phase as an averaging of the
two arguments arg[G(i,,)] and arg[G(i,, +S)] surrounding

the component:
P = (5, parelGi )]+ 5, farglG i, + 9]+ (15)

Better estimation can be attained by considering also the
long-range contributions (Fig. 3c):

Apliy) _ Zig+5+0y [Glig+s) . [Glin+ )
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The systematic errors of the phase estimations

E=¢,—-¢,(p, - isthe true value of the phase) are phase

dependent (Fig. 2: The error curves are very close to sine

like function). In simulations, the absolute maximum values

of the errors at a given relative frequency were searched

when phase were changed in interval —7z/2< ¢ < 7/2 (Fig.

3). The estimation errors drop with the increasing relative
frequency.
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Fig. 2. Phase dependency errorsat =22, -z/2<¢p<x/2;
Estimations: a— by (10), b—by (15), c—by (17), d—by (11)
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Fig. 3. Maximal systematic errors of the phase estimations: a— by
(10), b—by (15), c—by (17), d—by (11); @ isknown
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Fig. 4 shows the importance of the frequency estimation
accuracy. If the frequency is estimated by a known two-
point estimation (18) [2] the overall errors increase (Fig. 4
Ec*/Ec ~ 200).

G, +s)
(Gliry )| +IG(ir, +5)

f=i+0,=i+s (18)

|E(@m)l e /1D

1,98 2 202 0

Fig. 4. Maximal systematic errors of the phase estimationsin the
interval 1,98< 0 < 2,02 : a-by (10), b—by (15), c—by (17);

a’,b’,c” - 6 isestimated by (18)

4. UNCERTAINTY

The uncertainty propagation through the DFT procedure

is well known op =0, =055 =0pe =O'I/(N«/E)1/Nilwz(k)
=0

[7], where we use R(i)=Re[G(i)] and I(i)=1m[G(i)] for
the rea and imaginary parts of the DFT and
IG() =VR?(i)+17%() for  the amplitude and
o(i) = arg[G(i)] = tan™(1(i)/R(i)) for the phase. The phase
uncertainty is equal to the uncertainty of the DFT procedure
scaled by the amplitude coefficient o, = oo /|G(i)) :

O9() _ 1) Op(i) _ R(i)
0= e ©O= 50 ey @
G;(i) = (Crow )2 +(co, )2 = GEZ)FT ﬁ = |g(D|F)T|2 (20)

It is evident that the standard uncertainty of the phase
depends on the amplitude of the component. Moreover, in
the non-coherent sampling it changes with displacement &
aswe will seein the following examples.

Frequency isknown (o; =0):
For inteligibility, one can omit index m in (10)
¢, =¢li)-a-6+x/2 and from (20) we get (Fig. 5a):

o, 1
s = (21)
Oorr |G
For the second estimation by
9, =[1-55)p(i)+s5pli+s)+7z/2 (15 one needs

sensitivity coefficients associated with the rea and
imaginary coefficients for two spectral lines i, i +s:

a(ﬂb(l) a¢b(')
= - -)e); 6~ - @-e)c )
) :M:ﬁc (i+s); ¢ ; :a(l)b(i+s):s§c(i+5)
Rl = BR(i +S) R PR Al(i+9) !
(22)

Since the correlation coefficients for the rectangular
window r(R(i),R(i+s)) and r(I(i),l(i+s)) are zero and
standard uncertainties are equa
(*=1,i +s) wecan write according to [8]

Or+ =0+ =Oppr

(Fig. Bb):

2
o)
(4 _ 2 2 2
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Oprr

Zo (- 85)/IGM))* +(S/GG +9))*  (23)

DFT

In calculations of the four sensitivity coefficients for the
third estimation (24) one needs partial sensitivity
coefficients for the amplitude 0|G(*)|/oR(*)=R(*)/|G(*)
o|G(*)|/al (*)=1(*)/|G(*)) and for the phase coefficients
0p(*)[0R(*), 0¢(*)/dl (*) (19) since all of them contribute
in the estimation:

_16(0le(i) + GG + (i +9) bei+9l ). 7
T el bei s $[ 1G]+ BG( +9) 55} 7 29
0p.(*) . 99, (*)
s AN = 9P 2
" OR(x) ol (%) (29)

In these case the uncertainty is close to the uncertainty of
the estimation by (15) (Fig. 5¢). Ratios of the uncertainties
of the phase estimations related to the standard uncertainty
of the amplitude DFT coefficient are between 2 and 3,5
symmetrically depending on the term & at higher values of
therelative frequency 6.

Sy

2 3 4 5

Fig. 5. Ratios of the uncertainties of the phase estimations related
to the standard uncertainty of the amplitude DFT coefficient
(dimensionsin rd/V ). Estimations; a— by (10), b — by (15), c—by

(17), 0 isknown; a*,b*,c" - @ isestimated by (18)
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Frequency is estimated by (18)
The uncertainties of the estimations increase if one needs
to estimate also the displacement term 5(G(i)/G(i +s)). In

the first estimation (10) one needs partia sensitivity

coefficients aso for the displacement term
05/3|G(i) =~ SG(i +8)/(G( ) +|G(i +$))’ and
05/0/G(i + ) = §G(1)}/(G(1) +/G(i +s))*
_0p, _99() . 05 JG(+)
®UOR() AR OG(x)] OR()
_op, _0pl) 95 A6
R TORETO N O RO N
All  the partiad sensitivity coefficients except

0p(i)/oR(i +s) and d¢(i)/0l (i +s) are non-zero. The ratio
of uncertaintiesis (Fig. 5 a*):

O-tﬂa ’ _ CZ CZ Cz C2
:L\/naz[&j_ww
Oper |G(i )l |G(i )|+|G(i +S)| (lG(i )|+|G(i +S)|)4

(27)

In the second estimation (15) we have following
dependencies 5(R(*),1(*)), @(*)=¢(R(x),1(x)) and the
sensitivity coefficients are as follows:

_ 0o, _ oo(i)
_M s)- fﬂ('))— (1-s0)—=

= sloli+ oR() oR()

Cr,.

- S0 +9)-0())-r o+ 1-50)- 28

0p(i +59)
=slpli+9) () s R

G, =

0Py
ol(i)

C. .
Rodvs = 6R(|+s)

(S)

0p(i +59)
+so ol(i+s) (28)

=S(g(i +5)—(i))-

Ib,i+s

8I(|+) 8I( s)

where we use 06/0R(*)=05/0|G(*)|- 6|G(*)//oR(*) and
06/01 (x) = 85/0|G(*)- 9|G(*)/ol (x).  The ratio  of
uncertainties can be expressed as (Fig. 5 b*):

-
IGG)|

IGi+s)  Ra)
(GMI+IGG +s))* 1GG)

29)

The uncertainty of the third estimation (Fig. 5 ¢*) isvery
close to the upper uncertainty (Fig. 5 b*) at higher values of
the 6. Fig 5 shows that uncertainties of the estimations
increase for a factor 2+23 if frequency is estimated by

(18).

G(i +s)’
(GG +IG(i +s))*

1G0)
GG

j — (gli +9)-0()*

=2:(p(i+9)- (i) (1-0)-

5. EXPERIMENTAL RESULTS

The methods were also tested by a real measurement
system. In experiment we use sampling DVM (HP3458:
fs=25kHz, U . =10V, N =1024, time base accuracy:
0,01%, jitter <100ps) and synthesizer/function generator
(HP3325A: f =100Hz, u, =20V, frequency accuracy:

5.10°, triangle linearity: 0,05% of the range).
Interpolation algorithms have been validated with the sine
(Figs. 6 and 7) and triangular (Figs. 8, 9, and 10) shape

signals.
u/Vv
10
200]  \a0o 600 o n
-10 R
136 382

Fig. 6. Sampled sine function N =1024 and truncated part
Nwmdow = 505 ( 9 = 2102 )

The truncated window (the bold line in Fig. 6) has been
moved for approximately one period (from point 136 to
point 382). The estimations with interpolations algorithms
(20), (15), (17), and (15) with the estimated displacement by
(18) have been compared to the estimation by the coherent
sampling window N =500=2* fs/f (6=2) with the
same first sampling point. The maximal errors of phase
estimations E, = ¢(0 = 2,02) - ¢(0 = 2) (Fig. 7) are closeto
the expected values in Fig. 4. The best results give us the

estimation by (17) (Fig. 7c: |E,|  ~4-10°rd~2m’).
10t |E¢|/rd
/b*
10°° 2
b
._cC
10°
A R e e et | >
100 200 300 1400 n
136 382

Fig. 7. The absolute values of errors of the phase estimations: a—
by (10), b—by (15), c—by (17), b* —by (15) and @ isestimated
by (18)
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The triangular shaped signal (Fig. 8) has higher
harmonics, which disturb the phase estimation of the
fundamental component. At some values of the relative
frequency the second estimation by (15) gives better results
than by (17) since it doesn't emphasize only a single
(fundamental) component (Fig. 9). The maximal values of
errorsarenear [E,|  ~10°rd~57m".

u/Vv
10
R T T A S S ] ;/ >
200 00/ 600 800 1000 n
-5
-10 |
136 382
Fig. 8. Sampled triangular function N =1024 and truncated part
Noyingow =505 (6 =2,02)
101 |E¢|/rd
/a*
102
a
b
10°®
———
100 200 300 1400 n
136 382

Fig. 9. The absolute values of errors of the phase estimations of the
fundamental spectral component 6 = 2,02 : a— by (15), b—by

(17), ' —by (15) and @ isestimated by (18)

o B .
10" S
b
10°
A
100 200 300 , 400 n
136 382

Fig. 10. . The absolute values of errors of the phase estimations of
the third spectral component 6 = 6,06 : a— by (15), b—by (17), &’
—by (15) and @ isestimated by (18)

The amplitude of the third component is nine times
smaller than the amplitude of the fundamental component
and the uncertainty contribution to the estimation error
relatively increases (Fig. 10).

4. CONCLUSIONS

In the paper, we have pointed out the advantages of the
DFT interpolations for the phase estimation. Interpolations
where the long-range leakage is considered decrease
systematic effects. One possibility is an averaging of the two
arguments surrounding the component (15). This estimation
is independent of the number of the sampling points. Better
estimation can be attained by considering aso the long-
range contributions (17). The error bound of the phase

estimation is lower than |E| _ <1m’, if we have enough

periods of the signa in the measurement interval 6 >5.
When the measurement window is shortened to around two

cyclesof the signal errorsincreaseto ||, <2m".

The simulation and experimental results show that the
systematic errors and uncertainties almost symmetricaly to
the integer values of the relative frequency change with the
displacement term & in the non-coherent sampling.
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