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Abstract − Possibilities of an error reduction of the 
phase estimation with an interpolated discrete Fourier 
transform (DFT) for the rectangular window are described. 
Properties of interpolations are studied with respect to their 
ability for correction systematic effects of the used window. 
The correction is improved with considering the leakage 
effect of the component spectrum. Uncertainties of the phase 
estimations have been studied. The simulation and 
experimental results are presented showing the effectiveness 
in estimating the phase of the signal component. 
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1.  INTRODUCTION 

 
To estimate parameters of the time depended signals, 

containing any periodicity, it is most suitable to use the 
frequency domain. The basic parameters of periodicity are: 
frequency of the energy kernel , amplitude of the 
frequency main lobe  and phase 

mf

mA mϕ , i.e. the time 
position of the signal structure [1]. The sampled analog 
multi-frequency signal  can be written as follows: (tg )
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Tones of the sampled signal do not always coincide with 
the basic set of periodic components of the discrete Fourier 
transformation. The position of the measurement component 

mδ  between DFT coefficients  and ( )miG ( )1+miG  
surrounding the component can be estimated by means of 
the interpolation [2-4]. In this paper we try to show a two-
point interpolation of the DFT also for improving the phase 
estimation. 

 
2.  ANALYSIS OF THE DFT COEFFICIENTS 

 
Using  samples of the signal (1), the DFT at the 

spectral line i  is given by: 
N
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where mθ  is the signal frequency divided by the frequency 
resolution of the time window ( tNf )∆∆ /1=  and can be 
written in two parts: 

 mm
m
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where  is an integer value and the displacement term mi mδ  
is caused by the non-coherent sampling. 

The DFT coefficients surrounding one component in the 
signal are due to the short-range leakage contribution of the 
window spectrum weighted by the amplitude of the 
frequency component (from the first term in (2)) and the 
long-range leakage contributions. For one component only, 
the expression (2) can be reduced: 
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If the function )(θW  of window used is analytically 
known, the parameters of the signal can be estimated. For 
the rectangle window, the following equation is valid, where 
the Dirichlet kernel is used [5]: 
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The largest DFT coefficient, which is mostly composed 
of the short-range leakage contribution of the investigated 
component , can be deduced from (4) and (5) using m

( ) NNa 1−= π  and 2πjej −=− : 
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The component phase mϕ  is referred to the start point of 
the window (not to the middle point [6]). Since  is usually 
large  and considering (3), (6) can be rewritten: 

N
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Both, amplitude and phase have additional disturbing 
components from the second part in (7): 
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If the displacement term is positive 0 05, ≥> mδ , than 
the second largest DFT coefficient is G  and if the 
displacement term is negative 0

( )1+mi
5,0−≥> mδ , than the 

second largest DFT coefficient is ( )1−miG  (Fig.1). The 
difference of the coefficients surrounding the largest one 

 gives us the sign of displacement ( )miG
( ) ( )( 11 −−+ mm iGiG )sign=s . The largest side coefficient 

can be expressed in common as: 
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Fig. 1. Phasors diagrams for a single component  1=mA 3πϕ =m  
and the rectangular window: a) 4,4=mθ ;  b) 6,3=mθ  

 
3.  PHASE ESTIMATION 

 
In the first approximation, the second term in (7) and (9) 

can be neglected and the phase of component can be 
estimated by: 
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We can improve the estimation by considering the long-
range contributions, which have following properties: 
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If  is large enough, we can equalize 1>>mi
( ) ( )sim im +≈ ∆∆  and (12) can be written as: 
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The multiplication of (10) and (11) by the correction 
(14) gives us estimation of the phase as an averaging of the 
two arguments ( )[ ]miGarg  and  surrounding 
the component: 

([ siG m +arg )]
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Better estimation can be attained by considering also the 
long-range contributions (Fig. 3c): 
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The systematic errors of the phase estimations 
0ϕϕ −= mE ( 0ϕ  - is the true value of the phase) are phase 

dependent (Fig. 2: The error curves are very close to sine 
like function). In simulations, the absolute maximum values 
of the errors at a given relative frequency were searched 
when phase were changed in interval 22 πϕπ ≤≤−  (Fig. 
3). The estimation errors drop with the increasing relative 
frequency. 
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Fig. 2. Phase dependency errors at 2,2=θ , 22 πϕπ ≤≤− ; 
Estimations: a – by (10), b – by (15), c – by (17), d – by (11) 
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Fig. 3. Maximal systematic errors of the phase estimations: a – by 

(10), b – by (15), c – by (17), d – by (11); θ  is known 
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Fig. 4 shows the importance of the frequency estimation 
accuracy. If the frequency is estimated by a known two-
point estimation (18) [2] the overall errors increase (Fig. 4: 

200cc ≈∗ EE ). 
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Fig. 4. Maximal systematic errors of the phase estimations in the 
interval 1 02,298, ≤≤ θ : a – by (10), b – by (15), c – by (17); 

 - ∗∗∗ c,b,a θ  is estimated by (18) 

 
4.  UNCERTAINTY 

 
The uncertainty propagation through the DFT procedure 

is well known ( ) ( ) ( )∑
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the real and imaginary parts of the DFT and 
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( iRiI-1tan )iGi arg ==ϕ  for the phase. The phase 

uncertainty is equal to the uncertainty of the DFT procedure 
scaled by the amplitude coefficient ( ) ( )iGDFTi σσϕ = : 
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It is evident that the standard uncertainty of the phase 
depends on the amplitude of the component. Moreover, in 
the non-coherent sampling it changes with displacement δ  
as we will see in the following examples. 

 
Frequency is known ( 0=δσ ): 
For intelligibility, one can omit index  in (10) m

( ) 2a πδϕϕ +⋅−= ai  and from (20) we get (Fig. 5a): 
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Since the correlation coefficients for the rectangular 
window ( ) ( )( )siRiRr +,  and r  are zero and 
standard uncertainties are equal 

( ) ( )( siIiI +,

,

)

DFT, σσσ == ∗I∗R  
( sii +=∗ , ) we can write according to [8] (Fig. 5b): 
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In calculations of the four sensitivity coefficients for the 
third estimation (24) one needs partial sensitivity 
coefficients for the amplitude ( ) ( ) ( ) ( )∗∗=∗∂∗∂ GRRG , 

( ) ( ) ( ) ( )∗∗=∗∂∗∂ GIIG  and for the phase coefficients 
( ) ( )∗∂∗∂ Rϕ , ( ) ( )∗∂∗∂ Iϕ  (19) since all of them contribute 

in the estimation: 
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In these case the uncertainty is close to the uncertainty of 
the estimation by (15) (Fig. 5c). Ratios of the uncertainties 
of the phase estimations related to the standard uncertainty 
of the amplitude DFT coefficient are between 2 and 3,5 
symmetrically depending on the term δ  at higher values of 
the relative frequency θ . 
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Fig. 5. Ratios of the uncertainties of the phase estimations related 

to the standard uncertainty of the amplitude DFT coefficient 
(dimensions in Vrd ). Estimations: a – by (10), b – by (15), c – by 

(17), θ  is known; a  - ∗∗∗ c,b, θ  is estimated by (18) 
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Frequency is estimated by (18) 
The uncertainties of the estimations increase if one needs 

to estimate also the displacement term ( ) ( )( siGiG +,δ ) . In 
the first estimation (10) one needs partial sensitivity 
coefficients also for the displacement term 
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All the partial sensitivity coefficients except 
( ) ( )siRi +∂∂ϕ  and ( ) ( )siIi +∂∂ϕ  are non-zero. The ratio 

of uncertainties is (Fig. 5 a*): 
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In the second estimation (15) we have following 
dependencies ( ) ( )( )∗∗ IR ,δ , ( ) ( ) (( ∗∗= ))∗ IR ,ϕϕ  and the 
sensitivity coefficients are as follows: 
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where we use ( ) ( ) ( ) ( )∗∂∗∂⋅∗∂∂=∗∂∂ RGGR δδ  and 
( ) ( ) ( ) ( )∗∂∗∂⋅∗∂∂=∗∂∂ IGGI δδ . The ratio of 

uncertainties can be expressed as (Fig. 5 b*): 
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The uncertainty of the third estimation (Fig. 5 c*) is very 
close to the upper uncertainty (Fig. 5 b*) at higher values of 
the θ . Fig 5 shows that uncertainties of the estimations 
increase for a factor  if frequency is estimated by 
(18). 

3,22 ÷

 

5.  EXPERIMENTAL RESULTS 
 
The methods were also tested by a real measurement 

system. In experiment we use sampling DVM (HP3458: 
kHz25S =f , V10range =U , , time base accuracy: 

, jitter 
1024=N

%01, ps100< ) and synthesizer/function generator 
(HP3325A: Hz100=f u, , frequency accuracy: 

, triangle linearity:  of the range). 
Interpolation algorithms have been validated with the sine 
(Figs. 6 and 7) and triangular (Figs. 8, 9, and 10) shape 
signals. 

V20pp =

%05,06105 −⋅

 

 

382136

400200

10−

5−

Vu
10
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Fig. 6. Sampled sine function  and truncated part 1024=N
505window =N  ( 02,2=θ ) 

 
The truncated window (the bold line in Fig. 6) has been 

moved for approximately one period (from point 136 to 
point 382). The estimations with interpolations algorithms 
(10), (15), (17), and (15) with the estimated displacement by 
(18) have been compared to the estimation by the coherent 
sampling window ffN S*2500 ==  ( 2=θ ) with the 
same first sampling point. The maximal errors of phase 
estimations ( ) ( 202,2 =− )== θϕθϕϕE  (Fig. 7) are close to 
the expected values in Fig. 4. The best results give us the 
estimation by (17) (Fig. 7c: o5− m2rd ≈104

max
⋅≈ϕE ). 
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Fig. 7. The absolute values of errors of the phase estimations: a – 
by (10), b – by (15), c – by (17),  – by (15) and ∗b θ  is estimated 

by (18) 
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The triangular shaped signal (Fig. 8) has higher 
harmonics, which disturb the phase estimation of the 
fundamental component. At some values of the relative 
frequency the second estimation by (15) gives better results 
than by (17) since it doesn’t emphasize only a single 
(fundamental) component (Fig. 9). The maximal values of 
errors are near om57rd10 3

max
≈≈ −

ϕE . 
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Fig. 8. Sampled triangular function  and truncated part 
 (

1024=N
02,2=505window =N θ ) 
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Fig. 9. The absolute values of errors of the phase estimations of the 

fundamental spectral component 02,2=θ : a – by (15), b – by 

(17),  – by (15) and ∗a θ  is estimated by (18) 
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Fig. 10. . The absolute values of errors of the phase estimations of 

the third spectral component 06,6=θ : a – by (15), b – by (17), a  

– by (15) and 

∗

θ  is estimated by (18) 

The amplitude of the third component is nine times 
smaller than the amplitude of the fundamental component 
and the uncertainty contribution to the estimation error 
relatively increases (Fig. 10). 

 
4.  CONCLUSIONS 

 
In the paper, we have pointed out the advantages of the 

DFT interpolations for the phase estimation. Interpolations 
where the long-range leakage is considered decrease 
systematic effects. One possibility is an averaging of the two 
arguments surrounding the component (15). This estimation 
is independent of the number of the sampling points. Better 
estimation can be attained by considering also the long-
range contributions (17). The error bound of the phase 
estimation is lower than om1max <E , if we have enough 
periods of the signal in the measurement interval 5>θ . 
When the measurement window is shortened to around two 
cycles of the signal errors increase to om2max <E . 

The simulation and experimental results show that the 
systematic errors and uncertainties almost symmetrically to 
the integer values of the relative frequency change with the 
displacement term δ  in the non-coherent sampling. 

 
REFERENCES 

 
[1] K.K. Clarke, D.T. Hess, "Phase Measurement, Traceability, 

and Verification Theory and Practice", IEEE Trans. Instrum. 
Meas., vol. 39, no. 1, pp. 52-55, February 1990. 

[2] T. Grandke, "Interpolation Algorithms for Discrete Fourier 
Transforms of Weighted Signals", IEEE Transactions on 
Instrumentation and Measurement, vol. IM-32, no. 2, pp. 
350-355, June 1983. 

[3] G. Andria, M. Savino, A. Trotta, "Windows and 
Interpolation Algorithms to Improve Electrical Measurement 
Accuracy", IEEE Transactions on instrumentation and 
measurement, vol. 38, no. 4, pp. 856-863, August 1989. 

[4] J. Schoukens, R. Pintelon, H. Van hamme, "The Interpolated 
Fast Fourier Transform: A Comparative Study", IEEE 
Transactions on instrumentation and measurement, vol. 41, 
no. 2, pp. 226-232, April 1992. 

[5] F. J. Harris, " On the Use of Windows for Harmonic 
Analysis with the Discrete Fourier Transform", Proceedings 
of the IEEE, vol. 66, no. 1, pp. 51-83, January 1978. 

[6] M. Bertocco, C. Offelli and D. Petri, "Dynamic Behavior of 
Digital Phase Estimator", IEEE Trans. Instrum. Meas., vol. 
41, no. 6, pp. 755-761, December 1992. 

[7] J. Scoukens, J. Renneboog, "Modelling the Noise Influence 
on the Fourier Coefficients After a Discrete Fourier 
Transform", IEEE Transactions on instrumentation and 
measurement, vol. IM-35, no. 3, pp. 278-286, September 
1986. 

[8] International Org. for Standardization, Guide to the 
Expression of Uncertainty in Measurements, Geneva, 
Switzerland, 1995. 

 
 
 
Author: Dr. Dušan Agrež, Faculty of Electrical Engineering, 
University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia, 
phone: +386 1 4768 220, fax: +386 1 4768 426 and e-mail: 
dusan.agrez@fe.uni-lj.si. 
 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4 


	P22: 
	Numb: 
	Numbx: 
	C: 446



	P23: 
	Numb: 
	Numbx: 
	C: 447



	P24: 
	Numb: 
	Numbx: 
	C: 448



	P25: 
	Numb: 
	Numbx: 
	C: 449



	P26: 
	Numb: 
	Numbx: 
	C: 450





