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Abstract − This paper deals with the specification of 
method accuracy enhancement for unsteady aerodynamic 
forces and moments in an airfoil cascade. These forces are 
induced by forward and angular vibrations of airfoils. The 
improvement is achieved by taking airfoil and other 
elements deformations in consideration in the calibration and 
measurement process. 
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1. INTRODUCTION 
 
To analyse the turbomachine blade dynamic stability in a 

stream, unsteady aerodynamic loads induced by blade 
oscillations must be measured. Usually, these loads are 
measured on airfoil cascades.  

The cascade of airfoils of an axial compressor is shown 
in Fig. 1. The aerodynamic load at arbitrary airfoil vibration 
can be described by both forces L, K and moment M. The 
influence of airfoil oscillations along the axis X, and also the 
force K [1] can be neglected. Therefore, it is enough to 
measure force L and moment M at forward y and angular α 
vibration displacements of airfoils. 

 
Fig. 1 Diagram of a compressor cascade of airfoils 

b - chord of an airfoil, t - step of a cascade, β - stage angle, V1 – 
inlet velocity. 

 
The airfoils must be longer in order to reduce the 

influence of wind tunnel walls on airfoil load measurement 
due to which the airfoil rigidity and results are reduced and 
the measured load is changed if additional deformations 
occur. With thin airfoils in gas-turbine engines being used, 
the above mentioned contradiction is aggravated 

nevertheless such airfoils demand careful research of their 
dynamic stability.  

 
Main principle of loading measurement consists in 

registration of some measuring system response parameters 
on this loading and in establishing of these parameters 
coupling with loading. 

The currents in moving coils of electrodynamic 
vibrators, exciting specific oscillations of an airfoil [2, 3], 
can be registered as parameters which describe an 
oscillatory system response to aerodynamic loading. Non-
stationary aerodynamic loading is determined from current 
changes during airfoils oscillations in a flow and in absence 
of it. 

According to one of the method [2], aerodynamic forces 
are measured by strain gauge dynamometer but the 
aerodynamic moments are measured by the current in the 
electrodynamic vibrator voice coil. This vibrator excites 
airfoil angular vibrations. That method has been further 
developed in [3], so that angular and forward airfoil 
vibrations are excited by means of a pair of electrodynamic 
vibrators. Aerodynamic forces and moments are determined 
by the current in the voice coils. 

However, deformations of an airfoil and elements of 
vibrator coils fastening are not taken into account in [2] and 
[3]. The purpose of the present work consists in enhancing 
precision for the method [3] by respecting deformations 
influencing the measuring system calibration and 
measurements of aerodynamic load. 

 
2. PRECISION ENHANCEMENT OF THE METHOD  

 
2.1. Design of the measuring system 
The airfoils are located in a working part of a wind 

tunnel on individual measuring systems (Fig. 2). 
Elastic elements of different width form oscillatory system 
in the shape of elastic parallelogram which makes the airfoil 
fixation move in a forward and angular way. With the first 
own frequency of an airfoil being much higher than the 
airfoil excitation frequency, its displacement is constant 
along the length. The master-generator of signals and 
feedback controller are used to control vibration. 

The airfoil fixing parts displacements are measured by 
means of eddy-current contactless sensors. The signal 
master-generator and controller in a feed-back circuit are 
used for the control oscillations. 
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Fig. 2  Measuring system (1 - airfoil, 2 - contactless displacement 

sensors, 3 – cross-beam, 4 - electrodynamic vibrator moving coil, 5 
- basic and auxiliary elastic elements, 6 - place for calibration 

mass) 
 
2.2. The mathematical model of the measuring system  
The aerodynamic loading on an airfoil depends not only 

on its oscillations but also on the next airfoils oscillations. 
As an example, oscillations of two cascaded airfoils will be 
considered. 

The centre of masses of the measuring system lies on the 
axis of torsion. In this case, bending and torsion movements 
are not mutually mechanically coupled. Therefore as an 
example, only bending vibration of measuring system will 
be considered because the airfoil torsion natural frequency is 
much higher than the flexural one. 

The diagram of flexural oscillations of two cascaded 
airfoils is shown in Fig. 3. 

 
Fig. 3  Diagrams of flexural oscillations of cascaded airfoils 
 
In the circuit the following symbols are being applied: 

mb1, Cb1 , mb2, Cb2 - given masses and bending rigidities of 
the cross-beam with voice coils, mm1, Cm1, mm2, Cm2 - given 
masses and bending rigidities of the oscillatory system, yb1, 
ym1, yb2, ym2 – complex vibration amplitudes of cross-beam 
and oscillatory systems related to the fix co-ordinate system, 

C –mechanical coupling rigidity of the oscillatory systems 
mediated by the structure of the rig. 

To excite prescribed oscillations of airfoils, hanging on 
moving coils of electrodynamic vibrators, the forces Fv1 and 
Fv2 must be created. A pair of the oscillatory system 
vibrators is regarded as one vibrator producing double force 

111 2 iFv µ= ,   (1) 
where i1, µ1 – electrical current and transfer factor of this 
electrodynamic vibrator. 

Let the oscillatory system be supposed to be linear, and 
with the vibrator being fed with sinusoidal current, the 
oscillatory system vibration will be harmonic, too.  

The distributed uniform loading Q1 acts on an airfoil the 
fixed part of which simplifies the harmonic motion with 
amplitude ym1 and frequency ω. This loading has inertial and 
aerodynamic parts: 

hLymQ mp /)( 11
2

11 += ω  ,  (2) 

where Fp - cross-sectional area of the airfoil, ρp - material 
density of the airfoil, h - airfoil length, L1 – non-stationary 
aerodynamic force.  

Let also the non-stationary aerodynamic forces be 
considered to be linearly connected with oscillations [1] at 
small airfoils oscillations: 
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where q –dynamic pressure, l11, l12, l21, l22 - aerodynamic 
coupling coefficients (ACC) which represent complex factor 
coefficients of proportionality between the airfoil 
oscillations and the force, induced by these oscillations. 

Then the distributed loading on an airfoil can be written  
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where 2
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1
ωpm

qhq =  - relative dynamic pressure, mp1 – 

mass of the airfoil. 

Additional airfoil displacement distribution due to this 
loading in compliance with the book [4] is  
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where  - natural frequencies and modes of 
airfoil oscillations, i - number of the mode. The detailed 
description of   is following: 
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The computation on the first member of the sum can be 
limited with error less 1% which means i=1, β1l=1,875 for 
Ω1/ω >2 in the formula (5). In this case, according to (7), 
additional displacement of the first airfoil can be received as 
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where kf1=Ω1/ω  - the relation of the lowest natural 
frequency of the first airfoil to operational frequency ω. 

Similarly for airfoil 2 
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With displacements of separate cross-sections of an 
airfoil being known, the new more exactly distributed 
loading on an airfoil, respecting its deformation, can be 
found out: 
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Then more exact resulting force acting on an airfoil is 
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After integration, it results 
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In the last two formulas following substitutions are adopted: 

1
613,0

2
1

1
−

=
fk

θ , 
1

613,0
2

2
2

−
=

fk
θ   (13) 

and also 

211211
2
2222222

'
22

222211112121
'
21

222211112112
'
12

211222
2
1111111

'
11

)21(

)1(

)1(

)21(

llqlqll

lqlqll

lqlqll

llqlqll

θθθ

θθθθ

θθθθ

θθθ

+++=

++++=

++++=

+++=

. (14) 

Let us record equations of oscillatory system motion 
with a cross-beam and replace the airfoil by its reaction :  '
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2.3. Coupling determination for the electrical current in 

a vibrator moving coil  with aerodynamic force. 
From the first equation of the system (15), the 

displacement of the cross-beam is found as 
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the cross-beam natural frequency to the operational 
frequency ω. 

After having substituted (11) and (16) into the second 
equation of a system (15), we shall receive 
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On the other hand, at absence of flow (q=0) 
011102011 2 iCyyH mm µη=− ,   (19) 

where i01 and ym01 , ym02-  coil current and displacement of 
the both oscillatory systems without a flow that are equal. 

With the control system ensuring the same oscillations of 
both systems in the flow and in calm fluid  

011 mm yy = ,   ,  (20) 022 mm yy =
the equation (19) can be substituted into the equation (17). 
We shall receive as a result 
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With similar measurements on another version of 
linearly independent system oscillations being made, two 
further equations, similar to (21) and (22), are received. This 
four-equation system will help to find unknown values of 

. Afterwards, it enables to find more exact 
value of ACC l

'
22
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11, l12, l21, l22 from the equation set (14). 
 

2.4. The measuring system dynamic calibration 
We shall find the unknown transfer factor µ1 by dynamic 

calibration of an electrodynamic vibrator. For this purpose 
with the flow being absent, the known inertial force to the 
system will be applied, with attaching an additional mass 
∆m to the mass mm1. 

The second equation of the system (15) will get the form 
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After having inserted (11) at q = 0 and (16) into the 
equation  (23), we shall receive  
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2

111211 2 mmm ymiCyyH +=−⋅ ,  (24) 
where i1∆ и ym1∆ - current and displacement with additional 
mass. 

With the control system supporting the same oscillations 
of both systems with additional masses and without them 

011 mm yy =∆ ,   ,  (25) 022 mm yy =∆
the equation (19) can be inserted into the equation (24). 
Then it follows : 
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We obtain µ2η2 by similar way. Thus, the specified 
dynamic calibration automatically takes the influence of a 
cross-beam deformation into account and enables the 
products µ1η1 and µ2η2 to be found at once in order to be 
used in the formulas (21) and (22).  

In case the additional masses ∆m have been attached on 
the cross-beam ends, the calibration relations are more 
complex. 
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3. ESTIMATION OF THE AIRFOIL DEFORMATION 
INFLUENCE ON THE FORCES MEASUREMENT 

RESULTS 
 

The dynamic vibrators calibration was applied in the 
article [3] in the above shown way with automatically taking 
a cross-beam deformation into account. However, the airfoil 
deformations were considered neither in this technique nor 
in the one of [2]. 

With the airfoils being considered absolutely rigid 

( 021 ==θθ ), it follows from the formulas (14) . 

It means that  represents the "old" ACC which can be 
determined by old technique of aerodynamic loading 
measurement without taking the airfoils deformation into 
account. Thus, the formulas (14) enable to refine the "old" 
ACC. 

jkjk ll ='
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The "old" ACC l   (thin lines) and the more exact 

ACC  (bold lines) are presented as a function of relative 

dynamic pressure in Fig. 4. The absolute values of the 
complex ACC are given in Fig. 4а. Their arguments (phase 
shifts between aerodynamic force and airfoil oscillations) 
are shown in Fig. 4b. As in our example, l is valid 

practically due to which  and l  are not shown in the 
figure. 
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Fig. 4  Relations of ACC to relative dynamic pressure (bold line – 
more precise ACC). 

The old results were measured on the airfoils that were 
rather thin (the thickness of an airfoil was 0,033 of its 
chords). These were made of a composite material on the 
basis of carbon filaments. The relation of the lowest natural 
frequency of airfoils to the operational frequency is kf1 = kf2 
= 3,29.  

As seen on Fig. 4, the error of ACC determination 
increases with relative dynamic pressure augmentation. The 
error increases with the measured aerodynamic force, too.  
The above mentioned error of measurements achieves 18 % 
for module and 2° for argument of l . For ACC  and 

, these errors have appeared to be even greater (24 % for 
absolute value and 4° for argument). 

'
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On the one hand, with this airfoil being made of steel, 
the relative dynamic pressure will decrease approximately 4 
times, but its natural frequency becomes smaller (kf1 = kf2 
=2,28), too. As a result, neglecting the steel airfoil 
deformation will cause an error of  35% in ACC 
determination. 

 
4.  CONCLUSIONS 

 
1. The mathematical model of the measuring system 

for non-stationary aerodynamic loading on vibrating cascade 
airfoils has been developed. The mathematical model takes 
the final rigidity of airfoils and other structural parts of the 
measuring system into account. 

2. The way of refinement of non-stationary 
aerodynamic loading per unit of length, as obtained by the 
old technique, has been found. The carbon composite 
airfoils material is shown to increase the loading 
determination accuracy.  

3. The dynamic calibration correctness is proved. As 
demonstrated, the dynamic calibration will respect the cross-
beam deformation automatically if additional masses are 
located in the place of the airfoil fixation. The calibration is 
more complex if additional masses are attached to the cross-
beam ends. 
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