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      Abstract − Many mechanical quantities in metrology 
are affected by the local gravity. Modern gravimetric 
methods allow to determine the local gravity value with 
sufficient accuracy, but the effort is still time consuming and 
expensive. An interpolation within available gravity 
databases mostly does not suffice because of an inadequate 
data density compared with the heterogeneous field. This 
study gives a short overview of today’s most important 
representations   of the physical gravity field. The classical 
methods will be introduced from the perspective of the 
usability in metrology and compared to some strategies in 
synthetic gravity modeling. 
  
      Keywords: local gravity, synthetic gravity, digital terrain 
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1. INTRODUCTION 
 

The local gravity value plays an important role in 
precision measurements of many mechanical quantities, i.e. 
the force of gravity, the mass, the pressure or even the 
electrical intensity. Newton’s law of gravitation serves as 
the basis for numerous applications in physics or especially 
in metrology. According to the particular purpose the 
applications are connected to relative uncertainties in a 
range from 10-2 to 10-6 or even less (see Fig.1). However, 
the local gravity is assumed as known within the same, 
respective less uncertainty.  

This can be covered with modern gravimetric 
methods easily which are presently limited three orders of 
magnitude beneath, at 10-9 relative.  

Fig. 1.  Relative uncertainties of methods to provide gravity 
parameters and applications affected by gravity 

In practical sense those gravity measurements are both 
expensive and very time consuming in relation to a required 
point density.  

Furthermore, a connection to a local reference 
network can be necessary depending on the type of 
measurement. Thus, existing databases of recent 
measurements normally do not have a sufficient density of 
gravity values to provide a required uncertainty for each 
place.   

One reason for this can be found in the 
inhomogeneous gravity field due to a irregular distribution 
of mass in the interior of the earth. A simple approximation 
of this field has been recommended by the International 
Association of Geodesy (IAG) in 1979 [1]. Because of its 
definition via a geodetic reference system it serves as a 
‘Normal’ gravity field. The differences to the physical field 
are described as gravity anomalies which can reach a 
magnitude of 10-4 relative. This corresponds to the accuracy 
level of the normal gravity. 

Applications of higher resolutions require a 
refinement of the global model based on the development of 
generic and synthetic  gravity models (see Fig.1). The latter 
break a new ground by the avoidance of gravity data as the 
basis of computation. With the help of external data sources, 
like terrain models, geological structures and density 
models, gravity modeling may achieve the requisite 
accuracy to become independent from national gravity 
databases. 

Future activities in this regard will be associated with 
the object to connect metrologic procedures referring to 
force, mass and torque to the gravity field via synthetic 
models. Present models in contrast do not provide gravity at 
10-6 relative which is required in the according error 
budgets.  

 
2. GENERIC REPRESENTATIONS OF THE 

GRAVITY FIELD 
  

The attractive force F after Newton's Law can easily be 
transduced into a gravitational acceleration b by setting the 
attracted point mass to unity. For practical computations in 
the gravity field the vector quantity b can be simplified by  
the scalar quantity of  the potential V. The relation may be 
given as     

grad b V=   (0) 
respective modifcated to gravity 

 Normal gravity 

 Applications in physics/metrology 

Gravity measurements 

Synthetic models 

10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9

∆g/g  

 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC3 



      grad g W= . (2) 
An analytical description of the gravity potential only 

succeeds at a bounding surface, under which all masses are 
concentrated. For points beneath this surface a function of V 
does not correspond to Laplace’s differential equation of 
second order  

                . (3) div grad 0Interior InteriorV V∆ = =
Basically this results from several singularities of the 
density distribution in the spherical layered earth structure, 
which is not known with sufficient accuracy. For the same 
reason a gravity model at present can only be derived 
indirectly from observations above the surface and 
hypotheses of the interior. 
 

2.1. Normal gravity field 
Assuming the singularities are neglected and a 

homogeneous  structure is adopted, the main part of the 
gravity field can be approximated . Moritz [2] has given an 
analytical approach for the gravity potential at an 
equipotential surface U0 by introducing four conventional 
constants of the Earth body. Its shape is fitted by an rational 
symmetrical ellipsoid that is located in the Earth center 
defined by the semi-major axis a and a dynamical form 
factor J2. The physical properties are described by the 
gravitational mass effect, set by the geocentric gravitational 
constant GM, and the Earth rotation, set by the angular 
velocity ω. The so-called Geodetic Reference System 1980 
combines therewith the postulations of a manageable 
geometry for the simplification of mathematical 
transformations and a normal gravity field as a reference for 
high-resolution gravity field representations. 

In the exterior space the potential U0 can be 
developed in spherical harmonics (see 1.3) that serve as a 
basis for the determination of further coefficients.     

According to eq. (1) the gravity on the ellipsoid 
surface can be derived from U0 as a function of the place. 
Due to the definition of U0 the normal gravity γ 0 can be 
represented in a closed formula but for practical use the 
following series expansion is easier to handle: 
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with ϕ : latitude  
 

Comparing to the closed form, eq. (4) reaches a relative 
uncertainty of 10-10. For applications with less demands eq. 
(4)  can easily be truncated after the 4th or 6th  order. 
In the exterior of the reference surface the change of gravity 
with height h can be treated approximately as linear. To 
cover world’s entire topography and parts beyond it a series 
expansion of at least second order has to be considered: 
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with h : height above reference surface 
 

If eq.(5) is regarded under the aspect of usability in 
metrology it sticks out primarily by its simplicity and its 
adaptability all over the world. As a practical application 
Schwartz and Lindau [3],[4] describe “The New Gravity 
Zone Concept in Europe for Weighing Instruments under 
Legal Control” with a relative uncertainty level of 10-4. 
 

2.2 Point and mean gravity anomalies 
Another representation of the gravity field comes 

with the introduction of gravity anomalies as the difference 
between gravity at an arbitrary level and the corresponding 
normal gravity. As a simple form the point free-air 
anomalies correlate the normal gravity with the gravity at 
the topographical surface.  

 

                0 ( , )N
Fg g hγ ϕ∆ = −  (6) 

 

Free-air anomalies depend strongly on height and are 
not suited for interpretation. The long and medium-wave 
part provided by global models, or corresponding mean 
anomalies, on the other hand, can be exploited, due to the 
smoothing of the high frequencies. Worldwide they vary 
about ±4·10-4  m·s-2 with maximum values up to some 10-3 

m·s-2. Fig.2 gives an overview of the free-air anomalies in 
Western Europe derived from a 6’x10’ grid of mean 
anomalies[5]. 

Bouguer anomalies are employed for regional and 
local investigations, as they are free from the effect of 
topography. The difference to eq.(6) is given by the plate 
reduction δg P which introduces the density distribution in 
the Earth’s crust and upper mantle. 

 

   N N
B F Pg g gδ∆ = ∆ −  (7) 

 

Bouguer anomalies play an important role in geophysical 
prospecting. 

Mean gravity anomalies over surface compartments 
are introduced in gravity field modeling, where the surface  

 
Fig. 2.  Free air gravity anomalies in Western Europe based  

on a 6’x10’ grid (≈11x20 km) of mean anomalies.  
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blocks generally are bounded by meridians and parallels. 
The mean values are calculated according to  
 

        ∫∫
σ

σ∆
ρ∆

=∆ dgg  1                                                   (8) 

 
The block size ∆σ depends on the data distribution. The 
maximum gravity field resolution which can be achieved is 

σ∆ . This corresponds to a maximum degree of the 
spherical harmonic expansion  = 180°/resolution°. 
Gravity anomalies have been derived from several 
campaigns over land and sea and are to some extent freely 
available from international databases.   

maxl

 
2.3 Spherical harmonic expansions 

A common and proved method to represent the 
gravity field is the expansion of the gravitational potential 
into spherical harmonics [6]. The mathematical formulation 
bases upon the reciprocal distance between the attracted and 
the attracting point. The quality of this approximation is 
represented by the number of coefficients that have to be 
determined from equally as possible distributed gravity 
observations. The spatial resolution of the model is mirrored 
by the associated Legendre functions in degree and order. 
They produce a regular grid of surface elements on the unit 
sphere bounded by parallels and meridians, analogue to the 
geographical grid of the Earth (Fig.3). Considering the 
gravity field as a signal source the lower degrees represent 
the long-wave parts resulting from deeper structures.   

 
Fig. 3.  Spherical harmonics on the unit sphere, example with  

degree and order (20,20) 
 
As mentioned above the analytical expression of the 

potential has to meet eq.(3), that implies all masses inside 
the boundary. A reasonable predefinition for this bounding 
surface can be set by an approximation of the sea level.  
Therefor all topographic masses have to be reduced and 
integrated in the resulting model. This equipotential surface, 
denoted as W, is of special interest for the implementation of 
natural height systems.   

Corresponding to the definition of gravity anomalies 
the potential W is generally related to the reference potential 
U0. The so-called disturbing potential T, eq.(9), can be 
regarded as the residual field in terms of a statistical analysis 
: 

0T W U= −  (9) 
 

Expanded in spherical harmonics the disturbing 
potential can be computed from geopotential model 
coefficients as a function of the longitude λ and the polar 
distance ϑ , which is deduced from the geographical 
latitude.    

∑
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with 
l,m              : degree and order 
∆C, ∆S        : spherical harmonic coefficients 
Plm (cosϑ ) : Legendre Polynoms with the argument of the 

polar distance ϑ  
λ                 : longitude 
 
We can apply eq.(2) in the same way to (9) and receive the 
gravity anomalies at W  
  grad g T∆ = . (11) 
 

The partial derivation of T reads after some little 
modifications  
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The radial distance r allows a computation outside the 
boundary surface. Eq.(12) coincides with the definition of 
the free-air anomalies related to the level surface W . 
 

2.4 Local gravity models  
While spherical harmonic expansions only admit a 

global approach the limitation of areas for a local 
representation with high accuracy is also possible. 
Assuming a high-resolution grid of gravity data is available 
for the computation area, the disturbing potential T results 
from the integration of gravity anomalies over surface 
elements. 

 

( ) ( ),
4
RT S

σ

g dϑ λ ψ
π

= ∆∫∫ σ , (13) 

with R: radius of the approximated sphere. 
The variable distance of the observations to the computation 
point P ( ),ϑ λ  is taken into account with the weighting 
function S(ψ). 

Contrariwise, with known potential respective geoid 
height N (see fig.5) the inversion of the integral formula, 
eq.(13), leads again to the gravity anomaly:   
 

( )316 sin 2
m m P

P P
N Ng N

R R
σ

γ γ
dσ

π ψ
−

∆ = − − ∫∫  (14) 

 

An alternative approach to the integral formulas is enabled 
by statistical procedures, like the least square collocation.  
 

 2.5  Upward continuation 
The procedures in 2.3 and 2.4 generally relate to the geoid 
as a common reference surface since an alternative 
reasonable representation of the gravity field is hardly 
conceivable. In the following step, each gravity value at the 
zero level has to be assigned to its equivalent at the physical 
surface. According to the schematic diagram in fig.4 the 
arbitrary surface point P differs from its foot at the geoid by 
the height H.  Due to the definition of the geoid, H coincides 
with the height above sea level. Point heights can be derived 
from digital terrain models which are available at different 
grid widths. 
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Fig. 4.  Geometrical relations between the Earth’s surface and 

virtual reference surfaces of the gravity field 
 
Beside the height, especially the correct gravity 

gradient alongside the plumb line is required for the transfer 
of the gravity to the surface. After eq. (5) a linear respective 
square approach can be chosen for the normal gravity field. 
But the normal gradient may differ from realty by >10%, 
which leads to big errors in mountainous regions. Thus, the 
normal part has to be supplemented by an anomalous part:  
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  (15) 
 

The solution of the anomalous part can be attributed to the 
first (Dirichlet) boundary-value problem of potential theory 
[5]. This may be solved by an integration over the surface 
gravity anomalies:  
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After some transformations into spherical approximation the 
surface anomaly in P reads 
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where  
           R : radius of the approximating sphere 
 rP : magnitude of the point vector P. 
 

An efficient method of calculation is enabled by the 
2D-Fast Fourier Transformation (FFT) [8]. This presumes a 
regular grid of anomalies on the boundary surface that is 
easy to produce from the gravity models. At first the grid at 
H=0 has to be converted into an image function 

via FFT, before the anomalies at H may be 
calculated in the frequency domain  

( , ,0)x yg k k∆

 
2 2

( , , ) ( , ,0) x yH k k
x y x yg k k H g k k e− +∆ = ∆ ⋅  (18) 

 

With a subsequently inverse FFT the anomaly grid at the 
surface can be re-transformed into the space domain. But the 
FFT method should be applied more in extended areas so 
that long and short-wave parts are represented comparably. 
Also the maximum height has to be many times smaller than 
the extension of the area in order to not exceed the Nyquist 
frequency. 
 

3. LIMITATIONS OF GENERIC MODELS  
 

A mutual property of the described generic gravity 
field models is the basis of gravity observations. The 
occurrence, the distribution and the uncertainty of the origin 
data characterizes the quality of these models significantly. 
Comparatively dense gravity networks and databases only 
exist in the industry nations while large regions in the world 
show big data gaps. The availability of the origin data is 
indeed often restricted by the owner.  

For the data acquisition over large areas currently 
only satellite missions and airborne gravimetric systems are 
qualified. Due to their limited resolution and precision both 
techniques contribute just long- and middle-wave parts of 
the gravity field. The high-frequent structures of the 
topography are supplied by terrestrial procedures which 
possess the required precision. Admittedly, they can be 
applied efficiently just in small regions. These facts, of 
cause, affect the quality and usability of today’s databases in 
terms of metrologic applications. 

Present gravity models employ area different types of 
datasets according to their procedure, their purpose and the 
covered area. Thus, the spatial resolution may vary between 
some 10° and about 1’ (1 arc minute). The current 
international recommended geopotential model, the EGM96, 
comes out with a resolution of 0.5°×0.5° (≈ 54 km, degree 
and order: l,m=360,360). Ultra-high resolution models, e.g. 
the GPM98, base upon grids of up to 6'×6' anomalies 
(l,m=1800,1800), which coincide with a metric resolution of 
10 km. The regional EGG97, limited to Europe, integrates 
datasets of 1’×1,5’, identical with about  2×3.5 km.  

Another limitation aspect of the described models 
arises from their geodetic nature. The main objectives can be 
found in the derivation of geoid heights or in the inverse 
interpretation of the Earth’s structure. Though metrology/ 
physics may also profit from these results, actually they do 
not cover its basic needs.  

The inverse computation of gravity anomalies from 
model parameters is always possible, but this is associated 
with a loss in accuracy comparing to the original data. This 
stems from filtering processes by smoothing and 
interpolation, to compensate irregularities, uneven 
distributions of observations or data gaps. Irregular 
distributed data between the grid knots suffer from the low 
resolution of the models. 

The fig.4 demonstrates the effect of the limited 
resolution of two geopotential models for a small test area in 
the north of Germany. In fig.4 (a) an overview of the 
topography is given, including a low mountain range with 
heights up to 1000m.  

The illustrations below show interpolated 
representations of free-air anomalies at the Geoid 
(coinciding with the sea level), which are results of the 
procedure described in 2.3. In this case free-air anomalies 
offer some important advantages: First, they can be 
computed directly, without the introduction of density 
hypotheses. Second, due to the condensation of all masses to 
the sea level they display, in a smoothed way, the structure 
of the above topography. For that purpose the contour lines 
with 200m equidistance have been overlaid.  
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The second graphic, fig.4 (b), represents interpolated 
free-air anomalies derived from the geopotential model 
EGM96. The resolution of this model only corresponds to 
0.5°, which is the half of the test area extension. Considering 
the intensity of the interpolated field, the color gradient does 
not coincide with the contour lines. The maximum value is  
to be found somewhere at the foothills aside from the 
highest peak. 

A significantly better accordance with the topography 
can be read out from the geopotential model GPM98, which 
is of 5 times higher resolution , fig.4 (c). In comparison to  
fig.4 (b) it has to accented that at the same number of colors 
the scale has been changed.  

 

 

   
Fig. 5    (a) Digital Height Model of the test area in Northern 

Germany (b) free-air anomalies computed from the EGM96 
geopotential model with overlaid contour-lines (c) free-air 
anomalies derived from GPM98 geopotential model 

The maximum anomalies almost concentrate in the tops of 
the mountain range whereas the rest of the contour does not 
fit very properly. Beneath the move of the location the 
increase of the resolution has led to a triplication of the 
maximum value. 

A quantified evaluation of the derived anomalies can 
be applied by observed reference gravity, which is hardly 
possible at the geoid. Before, the modeled anomalies have to 
be “upward continued“ to the surface, as described in 2.5.  

A study from Tscherning and Rapp [9] has 
demonstrated that the truncation of spherical harmonics at 
degree lmax produces an omission error due to the neglected 
part of the gravity field.  
Accordingly for the EGM96  this error reaches  ±2.5·10-4 

m·s-2 and for the GPM98 , it is about ±1.2·10-4 m·s-2.  
 
In order to decrease this error to dimensions < 10-5 m·s-2, the 
models  would have to be expanded to degree >10000. 

Local gravity field models attain sometimes much 
better resolutions and lower error budgets. Usually the 
corresponding region is chosen on the basis of the available 
data to avoid undesirable data gaps or irregular distributions.  

H
 / 

m
 

But generally these models are not freely available, so that 
they are not part of this study. 

The limited resolution of the available models may 
not  be a handicap if they serve as the source for further 
developments, which have more synthetic character.   
 

4. DIFFERENT STRATEGIES FOR  SYNTHETIC 
GRAVITY MODELING 

10-5

 
4.1  Synthetic fields based on spherical harmonics 

The number of coefficients can be extended also 
artificially by scaling and recycling the coefficients of 
existing models. Therewith high-degree solutions, with a 
spatial resolution of up to 3.6 km [10], have been calculated 
especially to prove the accuracy of geoid models. 

∆g
/ m

·s2 

This is possible because of the self-consistency of the 
derived gravity parameters. A disadvantage of this method 
can be found in areas of an originally bad data distribution, 
where the solution is based on an unfavorable statistical 
estimation. With a limitation to well-known regions like 
Europe these errors can be kept small. 

 10-5

4.2 Synthetic fields based on mass-density-source models 
Another strategy to determine the gravitational 

potential synthetically is to introduce information about 
external influencing factors. The integration of the 
differential mass elements can be solved by the knowledge 
of the mass-density-distribution within the interior of the 
earth and its topography. Through the numerical or 
analytical integration of Newton’s integrals, self-consistent 
values of the gravitational potential and acceleration can be 
generated. Allasia [11], e.g., has developed analytic 
solutions for a continuous mass-density distribution.  

∆g
/ m

·s2 

A practical approach of a synthetic spherical 
harmonic model is given by Haagmans [12]. On the basis of 
the EGM96 he has expanded the number of coefficients by 
addition of a synthetic topography model. Therefor the 
potential of a digital terrain model with a spatial resolution 
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of 9 km has to be transformed into spherical harmonics. The 
lmax of the synthetic model is determined by the resolution of 
the terrain grid. Due to the long-wave part of the 
topographic model is not very reliable it is replaced by the 
equivalent of the EGM96. The transition of both parts had to 
be low-pass filtered carefully. At present that model is 
mainly designed for geodetic purposes, like geoid 
computations. 

There are still intensive ambitions to develop a 
detailed 3D-density model of the upper crust. The exact 
knowledge of the lithosphere’s composition would be a first 
step on the way of a direct computation of gravity after 
Newton’s law. But by now the generic gravity modeling 
improved fundamentally.  
 

4. CONCLUSIONS 
 

Modern physical applications influenced by the gravity field 
move in a wide range of uncertainty up to <10-6. The 
required local gravity parameters can be derived from 
different representations of the gravity field Applications of 
low accuracy are covered by the compact model of the 
normal gravity field. Higher requirements have to be 
accomplished presently with local gravimetric 
measurements since gravity field models are of too low 
resolution. Auspicious approaches to the extension of the 
resolution can be found in the synthetic modeling. By this 
means the expensive local measurements may be replaced in 
the future by numerical methods for applications of relative 
accuracy requirements > 5·10-6. 
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