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Abstract: The Mexican Density Standard is starting 
operation as a national reference. In the present paper, it is 
presented the data analysis in hydrostatic weighing, the 
uncertainty estimation and its validation by Monte Carlo’s 
Method of the transfer of accuracy of the National 
Density Standard of Mexico. 
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1. HYDROSTATIC WEIGHING SYSTEM 
 
The Mexican Density Standard is a couple of zerodur 
spheres (calibrated by comparison against two primary 
density standards) placed in a semi automatic vertical 
system where the standards are being placed both in the 
bottom and on the top of the system (see fig 1). For the 
density determination of an unknown sphere (as an 
example) we make two weighing sequences in air and in 
liquid (transfer liquid, pentadecane).  
 
All the spheres are compared against stainless steel 
weights in order to reduce the no-linearity of the balance. 
For air weighing the unknown sphere is placed over the 
balance and, for weighing in liquid the unknown sphere 
is placed below the balance between the two density 
standards placed over and below the unknown sphere in 
order to measure the liquid density and from this way to 
measure the volume of the sphere under calibration by a 
measure of the buoyancy effect over this sphere.  
 
The pan of the balance was modified to receive the 
sphere under test for the air weighing, and there is a 
suspension with three places for each sphere, two density 
standards and the sphere under test. The suspension 
system for liquid weighing is connected to the balance 
(below the balance). 
 
For the air weighing almost all the process is manual 
except the data gathering, because the computer takes all 
the readings from the environmental sensors and from the 
balance when the metrologist push a button of the 
balance. 
 

 
 

Fig. 1. Hydrostatic Weighing System for the Mexican Density 
Standard  

 

 
 

Fig. 2. Hydrostatic Weighing System. Thermostatic bath with 
the national density standards in the top and in the bottom and 

the sphere under test in the middle. 
 

2. SEQUENCE OF THE PROCESS 
 
For a density determination of a solid, a sphere for 
instance, the sequence of the process is the following, 
 
2.1. Cleanness of the sphere under test (unknown sphere) 
2.2. Stabilization time (near of the balance) 
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2.3. Air weighing (against weights) 
2.4. Immerse the sphere under test into the transfer liquid 

in the corresponding place of the vertical system 
(into the thermostatic bath). The other two sphere 
must to be placed in their respectively positions of 
the vertical systems and, in thermal equilibrium 

2.5. Stabilization time (immersed in the liquid) 
2.6. Weighing of the spheres immersed in the transfer 

liquid by comparison against mass standards, one by 
one 

2.7. Getting out the test sphere from the liquid 
2.8. Repeat all the process for reproducibility evaluation 
 

3. MODEL OF MEASUREMENT 
 
The model of the measurement is formed by two 
equations, the first one for the weighing in air and the 
second one for the weighing in liquid. 
 
The volume of the unknown sphere will have traceability 
to the solid density standards (zerodur spheres) through 
the density of the liquid measured at the level of both 
solid density standards, see (1), 
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where, 
 
ρL density of the liquid at the level of the density 

standard 
ρa air density 
ms mass of the sphere (density standard) 
mms mass of the weights (mass standards) 
Vs volume of the sphere (density standard) 
Vms volume of the weights 
∆m mass difference reading from the balance and 

corrected by the sensitivity 
gc gravity correction due to the height difference 

between gravity centers of both sphere and 
weights 

t air temperature 
tL liquid temperature near of the density standard 
t0 reference temperature 
p pressure at level of the density standard 
p0 reference pressure 
αs volume thermal expansion coefficient of the 

density standard at 20 °C 
αms volume thermal expansion coefficient of the 

weights at 20 °C 
βs isothermal compressibility coefficient of zerodur 

at 20 °C and 101,325 kPa 
βms isothermal compressibility coefficient of 

stainless steel at 20 °C and 101,325 kPa 
 
from these values of density of the liquid (both top and 
bottom), and considering a linear vertical gradient for the 
density of the transfer liquid, we can evaluate the density 
of the liquid at level of the sphere under test, see (2) 
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where, 
 
ρLT density of the liquid at the level of the sphere 

under test 
ρL1,2 density of the liquid at the level of the density 

standards, top or bottom 
hT distance from the sphere under test to the 

transfer liquid level 
h1,2 distance from the solid density standards to the 

transfer liquid level 
 
With this value now we can evaluated the volume of the 
sphere under test solving both weighing equations in air 
and in liquid, 
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where Yi and Zi are the corresponding temperature and 
pressure correction, 
 

( )01 ttY ii −+= α     (4) 
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4. UNCERTAINTY EVALUATION 
 
For the uncertainty evaluation it is necessary to take into 
account all sources of uncertainty and its sensitivity 
coefficient related with the volume of the sphere under 
test. 
 
The formula for the uncertainty evaluation for 
uncorrelated input variables is the following [1], 
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5. NUMERICAL EXAMPLE 

 
A numerical example for the volume measurement of a 
solid is presented in table 1. The uncertainty analysis was 
made considering all input quantities uncorrelated. 
The first column shows the input quantity, second 
column shows the mean value, the third column shows 
the uncertainty of this quantity, in the fourth column are 
the units, in the fifth column are the contribution of each 
input quantity to the corresponding intermediate quantity, 
in the sixth column are the contribution in variance of 
each input quantity to the intermediate quantities and in 
the last column are the degrees of freedom estimated for 
each input quantity according to the GUM [1]. 
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Table 1. Uncertainty budget for a volume of a solid 
measurement using solid density standards. All input quantities 

are considered uncorrelated. 
 

Liquid density 1 Value Uxi CiUxi (CiUxi)^2 d.f.
mass of the density standard 998.14818 0.000125 g 3.17586E-07 1.0086E-13 100
volume of the density standard 393.59365 0.0004 cm3 -7.81004E-07 6.0997E-13 100
volume thermal expansion coefficient of the 
density standard 1.50E-07 1.50E-09 /ºC 6.14796E-11 3.7797E-21 22
compressibility coefficient of the density 
standard 1.10E-11 1.10E-13 /Pa -1.42039E-09 2.0175E-18 22
mass of the weights 695.761085 0.000071 g -1.80262E-07 3.2494E-14 100
volume of the weights 87.4761 0.071 cm3 1.72628E-07 2.9800E-14 100
volume thermal expansion coefficient of the 
weights 4.80E-05 4.80E-07 /ºC -1.53095E-10 2.3438E-20 22
air temperature 21.5 0.2 ºC 2.04969E-09 4.2012E-18 100
liquid temperature 20.053 0.006 ºC -6.93699E-10 4.8122E-19 100
air density 0.00095355 7.30E-07 g/cm3 1.62173E-07 2.6300E-14 114
mass difference -4.22E-03 8.62E-05 g -2.19033E-07 4.7976E-14 59
gravity correction -0.000357453 3.57E-06 g 9.08178E-09 8.2479E-17 13
pressure over the density standard 84507.25 100 Pa -8.44577E-10 7.1331E-19 22

0.7684957 g/cm3 9.21E-07 185
Liquid density 2
mass of the density standard 1001.334 0.000125 g 3.16575E-07 1.0022E-13 100
volume of the density standard 394.85082 0.0004 cm3 -7.78515E-07 6.0608E-13 100
volume thermal expansion coefficient of the 
density standard 1.50E-07 1.50E-09 /ºC 6.14796E-11 3.7797E-21 22
compressibility coefficient of the density 
standard 1.10E-11 1.10E-13 /Pa -1.42039E-09 2.0175E-18 22
mass of the weights 697.9781326 0.000075 g -1.90072E-07 3.6127E-14 100
volume of the weights 87.7542 0.077 cm3 1.85941E-07 3.4574E-14 100
volume thermal expansion coefficient of the 
weights 4.80E-05 4.80E-07 /ºC -1.53095E-10 2.3438E-20 22
air temperature 20.5 0.20 ºC 2.07414E-09 4.3020E-18 100
liquid temperature 20.049 0.0060 ºC -6.92444E-10 4.7948E-19 100
air density 0.000957823 7.39E-07 g/cm3 1.64219E-07 2.6968E-14 114
mass difference 2.08E-04 1.10E-04 g -2.78134E-07 7.7358E-14 59
gravity correction -0.000274278 3.57E-06 g 9.08178E-09 8.2479E-17 13
pressure over the density standard 82380.39 100 Pa -8.44573E-10 7.1330E-19 22

0.7684926 g/cm3 9.39E-07 199
Liquid density at solid level
liquid density 1 0.7684957 9.2E-07 g/cm3 4.76144E-07 2.2671E-13 185
liquid density 2 0.7684926 9.4E-07 g/cm3 4.53234E-07 2.0542E-13 199
distance from sphere1 to liquid level 0.44 0.005 m -2.79548E-08 7.8147E-16 5
distance from sphere 2 to liquid level 0.15 0.005 m 5.4046E-08 2.9210E-15 5
distance from the solid to liquid level 0.30 0.005 m -2.60912E-08 6.8075E-16 5

0.7684942 g/cm3 6.61E-07 387
Volume of the sphere under test
mass of weights 1 1002.714917 0.00002715 g 3.53726E-05 1.2512E-09 100
mass of weights 2 695.7230962 0.00007065 g -9.20469E-05 8.4726E-09 100
volume of weights 1 127.6221 0.0112 cm3 -1.38762E-05 1.9255E-10 100
volume of weights 2 87.4713 0.0712 cm3 8.86244E-05 7.8543E-09 100
volume thermal expansion coefficient of the 
weights 1 4.80E-05 4.80E-07 /ºC 5.76296E-08 3.3212E-15 22
volume thermal expansion coefficient of the 
weights 2 4.80E-05 4.80E-07 /ºC -1.47688E-07 2.1812E-14 22
air density 0.000950854 7.34266E-07 g/cm3 0.000344169 1.1845E-07 59
liquid density 0.7684942 6.60694E-07 g/cm3 0.000344246 1.1851E-07 387
air temperature 21.95 0.20 ºC 6.82081E-07 4.6523E-13 100
liquid temperature 20.043 0.0060 ºC 2.31281E-05 5.3491E-10 100
pressure over the sphere under test 83489.64 100 Pa 5.40289E-07 2.9191E-13 100
mass difference in air 5.51E-05 4.42588E-05 g 5.7663E-05 3.3250E-09 59
mass difference in liquid 4.93E-06 7.34875E-05 g -9.57437E-05 9.1669E-09 59
volume thermal expansion coefficient of the 
sphere under test 9.60E-06 9.60E-08 /ºC 1.56035E-06 2.4347E-12 22
compressibility coefficient of the sphere 
under test 1.35E-11 1.35E-13 /Pa -5.47448E-06 2.9970E-11 22
gravity correction for air measument 2.43922E-06 2.43E-08 g -3.16349E-08 1.0008E-15 22
gravity correction for liquid measument -0.000322111 3.21E-06 g 4.17754E-06 1.7452E-11 22
Volume of the sphere under test 399.91725 cm3 0.00052 187
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Now in order to validate this evaluation of the volume 
and its uncertainty of the solid under test, values obtained 
from a estimation from Monte Carlo’s method are 
presented next. 
 
Considering for this exercise all input quantities with 
frequency of normal distribution (it could be used other 
frequency distribution for some input quantities with 
similar results) with mean and standard uncertainty equal 
to the values reported in table 1, one thousand random 
values for each input quantity were generated and the 
same number of volume values were obtained from them. 
 
The mean and the standard deviation from the random 
numbers generated for each input quantity were 
compared with the values reported in table 1, and all 
them match good enough. 
 
The mean and the standard deviation of the volume 
values are the next (Monte Carlo’s method), 
 

=TV ' 399,917 23 ± 0,000 52 cm3 (k=1) 
 
frequency distribution is shown in Fig. 3. The value of 
volume evaluated by Monte Carlo’s method is different 
to the evaluation with the original data in 2x10-5 cm3 and 
uncertainty values are equals. 
 

 
Fig. 3. Histogram of the volume values obtained from Monte 

Carlo Method. All input quantities uncorrelated. 
 
It could be noted in table 1, that the uncertainty value 
obtained from (6) for the liquid density at the level of the 
sphere under test is small than uncertainties of liquid 
density at both top and bottom, this uncertainty value is 
less than the expected value. 
 
Taking into account a component due to a correlation  
(correlation factor = 1) between liquid density values of 
top and bottom in the uncertainty evaluation of the liquid 
at the level of the unknown sphere using (7), [1] 
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This value combined with the rest of components throws 
next value for the uncertainty of the liquid density at the 
level of the sphere under test, 
 

( ) =LTu ρ  ± 9,32x10-7 g/cm3 

 
This new value is still less than the uncertainty value of 
one of the liquid densities measured, but the difference is 
quite small. 
 
The combined standard uncertainty of the volume of the 
sphere under test using this new value of the liquid 
density at level of the solid is, 
 

u (VT) = ± 0,000 62 cm3 (k=1) 
 
This value of uncertainty is approximately 16 % bigger 
than the uncertainty value evaluated with input quantities 
uncorrelated. 
 
In order to validate this uncertainty value based in input 
quantities where two of them have a correlation factor by 
Monte Carlo’s method, ( ) 1, 21 =LLr ρρ , it were used the 
same values for the last numerical analysis but now, the 
values of liquid density 2 were evaluated as function of 
the values of liquid density 1 as, 
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where a0 is a difference of liquid density, and this 
difference was evaluated from the mean values of ρL1 and 
ρL2. This liquid difference was used by this way, because 
the density of the liquid at the bottom is always greater 
than in the top of the vessel due to the physical relation 
ship due to a combination of gradients of pressure and 
temperature in the column of liquid, and it could be 
considered stable enough for the measurement period. 
 
The mean and the standard deviation of the volume 
values evaluated by this numerical method are the next, 
 

=TV ' 399,917 22 ± 0,000 62 cm3 (k=1) 
 
frequency distribution is shown in Fig. 4. The value of 
volume evaluated by Monte Carlo’s method is different 
to the evaluation with the original data in 3x10-5 cm3 and 
uncertainty value is the same that the value evaluated by 
GUM’s method. 
 
The small difference between the results from numerical 
analysis against the result from the evaluation using the 
mean values and formulas could arises because mean of 
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the random numbers generated by software of the input 
quantities differs from its mean value in almost the same 
proportion. 

 

Volume of the sphere under test
input quantities correlated
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Fig. 4. Histogram of the volume values obtained from Monte 

Carlo Method. Taking account a correlation between two input 
quantities. 

 
There is a previous value certificated for the volume of 
the sphere under test. The result of the measurement was 
compared against this value using the normalized error 
criteria [2] in order to check it. The value of the 
normalized error (for approx. 95 % level of confidence) 
is less than one, the difference between the values is less 
than the combined uncertainty of the difference (error). 
 

6. CORRELATION BETWEEN ρL1 and ρL2 
 
For this measurement, there is a correlation between the 
liquid density determinations at both top and bottom, this 
correlation is a product to a physical relation, because it 
could be considered a liquid density determination for a 
same liquid at two levels with different instruments (solid 
density standard, balance, sensors, etc) and avoid all 
possible source of dependence in the measurement, but 
the physical relation ship it could not be avoid it. 
 
For this uncertainty estimation, it is necessary to 
introduce a contribution due to the correlation mentioned 
about, because it is not usual to have an uncertainty value 
for a measurand determination small than the uncertainty 
of the input quantities. 

7. CONCLUSIONS 
 
The value of volume obtained from the measurement is 
consistent with the previous value (certificated value) 
between the uncertainty limits. The measurement 
procedure, the evaluation of the volume and its 
uncertainty seems ok. 
 
The shapes of the frequency distributions of the volume 
evaluated by Monte Carlo’s Method seems 
approximately as normal distributions, and the 
confidence intervals could be taken from the t 
distribution, but, for the evaluation of the expanded 
uncertainty, there is a problem with the evaluation the 
effective degrees of freedom for measurement models 
with input quantities correlated. 
 
There is a correlation between input quantities and this 
correlation should been taken account for the volume 
uncertainty evaluation. 
 
It is not possible to evaluate the effective degrees of 
freedom with correlated input quantities, and considering 
only the uncertainty of the liquid density at level of the 
solid, the contribution due to the correlation is large 
compared with rest of contributions, and the evaluation of 
effective degrees of freedom is not realistic in this case. 
 
The correlations in measurements could have origin in 
metrological dependence or in physical relation ships, 
and both may affect the evaluation of the uncertainty. 
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