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Abstract − Magnetization of a mass standard can lead to 

weighing errors. This is because most modern balances are 
sources of non-uniform magnetic induction. Although the 
problem of unwanted magnetic forces is well known, the 
characterization of the magnetic properties of mass standards 
and balances can be problematic. This paper compares the kind 
of information that can be obtained from three types of 
instruments: Hall-probe gaussmeter, fluxgate magnetometer 
and susceptometer. 
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1. INTRODUCTION 
 

Balances are used in mass metrology to compare  the 
gravitational force on a standard weight and an unknown 
object. Some well-understood corrections (e.g. air buoyancy) 
may be applied. A number of parasitic forces (e.g. electrostatic, 
magnetostatic) defy systematic correction and, therefore, are 
best reduced to a level where they can be regarded as 
insignificant. In this regard, the International Organization of 
Legal Metrology  (OIML) has given some guidance regarding 
magnetic properties of mass standards [1]. The present 
recommendations are currently under review.  

Magnetic forces encountered when weighing objects with 
volume magnetic susceptibility χ  << 1 have been reviewed 
by Davis [2]. Gläser has extended this discussion to larger 
values of χ  and has also obtained essential data on the 
magnetic environment of several balances used in mass 
metrology [3].  

References [2] and [3] also make clear that magnetization 
of a weight may not be overlooked as a source of parasitic 
forces. This report deals with the following aspects: a) it 
outlines the conceptual problems in determining the 
magnetization of weights; and b) it shows why common 
techniques for determining magnetization may give differing 
results. 

 
2. INDUCED AND PERMANENT MAGNETIZATION 

 
Mass standards used in legal metrology typically have a 

lifting knob on the top and a recessed base [1], a shape which 
complicates the analysis of magnetic effects. A useful 
simplification of this shape is the assumption that such 
standards are cylinders with an aspect ratio γ (height to 
diameter) of 1.44 [3]. To introduce the present discussion, 
however, we will simply assume that each weight is a sphere of 
volume m0/ρ , where m0 is the nominal mass and ρ is the 
nominal density of the weight. Experimental results will show 

that this model, though grossly oversimplified, nevertheless is 
sufficient for a semi-quantitative discussion. Quantitative 
differences with respect to a more realistic model will be 
presented together with experimental results. 
 

2.1 Induced Magnetization 
In this discussion, we do not assume that determinations of 

magnetization are carried out in a magnetically shielded room. 
For practical reasons, measurements must usually be made in 
the presence of the earth’s ambient magnetic field 
strength, EH

r
. If unshielded, the earth’s field strength within a 

laboratory is approximately uniform with a magnitude roughly 
50 A/m. The field strength EH

r
 is the resultant of vertical and 

horizontal components which have an approximately dipole 
form over the surface of the earth. (Field components for a 
particular location on earth can be estimated conveniently 
using on-line software that implements the IGRF2000 model 
[4]). 
 A weight will, therefore, have an induced magnetization 
due simply to the earth’s magnetic field strength. For the 
spherical model, the weight acquires an induced magnetization 

iM
r

, given by 
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with N = 1/3 being the well-known demagnetization factor for 
a sphere. Consequently, the ambient magnetic field strength 
outside the sphere is iE HH

rr
+ , where iH

r
is the field strength 

of a spherical dipole of magnetic moment 
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and R is the radius of the sphere. The magnetic field strength of 
a dipole is given by formulas found in all standard textbooks. 
From (1), we can see that the induced magnetization is 
proportional to χ  for χ << 1. However, an asymptotic limit 
of 3 EH

r
 is approached as the susceptibility of the material 

increases. For cylinders where γ = 1.44, N is approximately 
0.24 in the range χ < 1 [5]. 
 

2.2 Permanent magnetization 
Induced magnetization is not an intrinsic property of the 

weight. For instance, it would be negligible in a well shielded 
laboratory, where the ambient field strength is essentially zero. 
However, weights may also have a permanent magnetization 
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pM
r

 leading to a magnetic field strength pH
r

outside the 

sphere. Unlike iM
r

, which is uniform in magnitude and 
direction within spheres (and nearly so within cylinders under 
usual conditions [5]), pM

r
has no such constraint. In principle, 

a weight will have a permanent dipole magnetic moment  
 

∫= dVMm pd
rr

                                    (3) 

 
where the integral is taken over the volume of the weight. At 
distances much greater than the dimensions of the weight, the 
contribution to the ambient magnetic field strength from this 
source will have a dipole character. One may, at least in 
principle, deduce dm

r
 from the dipole field strength that it 

produces. However, this approach is problematic because of 
the very weak signals involved and the effects of induced 
magnetization in unshielded laboratories. In addition, 
knowledge of dm

r
 tells us little about pH

r
in regions close to the 

weight. 
 

3. PRACTICAL METHODS 
 

 Although a rigorous characterization of pM
r

is impossible, 
it is nevertheless well known that permanent magnetization of 
weights is a real problem for mass metrology, especially for 
alloys containing iron [3]. Several suggestions for detecting 
problematic levels of magnetism in weights have been put 
forward [2,6]. The proposed measuring instruments are Hall-
probe gaussmeters [6], fluxgate magnetometers [6] and the 
so-called BIPM susceptometer [2,6]. None of these methods 
determines pM

r
 (or dm

r
) directly, and thus results are 

comparable in special cases only. It is the purpose of this 
article to define these special cases and to demonstrate 
experimentally that it is relatively simple to correct for the 
effect of the earth’s magnetic field strength. 
 
 3.1 Hall-Probe Gaussmeter  
 Hall sensors are solid-state devices designed to measure 
magnetic induction. They are generally small in volume (a 
typical form is a thin plate with length and width of about 
1 mm), sensitive along a well-defined axis, and may achieve a 
precision of 100 nT when measuring small changes to ambient 
fields. The sensor is mounted in a thin wand to form a probe. It 
is possible to mount three orthogonal sensors in a single wand. 
A single sensor may be used to measure the component of 
magnetic induction in the η direction: Bη=µ0(HE,η + Hi,η + 
Hp,η), where µ0 is the magnetic constant (4π×10-7 N/A2). Note 
that, if the probe is oriented in the East-West direction, HE,η is 
zero. If the axis of a cylindrical weight under test coincides 
with the axis of sensitivity of the probe,  then Hi,η is also zero. 
 
 3.2 Fluxgate Magnetometer [7]  
 A fluxgate sensor is a special kind of transformer which is 
sensitive to changes of 1 nT or less in ambient magnetic 
induction, although a magnetically shielded chamber is 
required to take full advantage of this sensitivity. As with the 
gaussmeter, induction is sensed along a well-defined axis with 
the possibility of placing three orthogonal sensors in a single 

probe. Typically, the sensor is ring-shaped and senses ambient 
fields that are in the plane of the ring and directed along the 
sensitive diameter [7]. A typical ring-core is about 15 mm in 
diameter. 
  
 3.3 Susceptometer 

In addition to determining the susceptibility of a sample, a 
susceptometer may also be used to detect the presence of 
permanent and induced magnetization [2].  In contrast to the 
two methods previously mentioned, it measures a change ∆FZ 
in vertical force, from which the gradient of the ambient 
magnetic induction may be deduced at a point: 

 

sm
F

Z
B ZZ ∆

=
∂
∂   ,                                 (4) 

 
where ms is the dipole magnetic moment of the susceptometer 
magnet, BZ is the component of magnetic induction in the 
vertical direction (η ≡Z) and the gradient is evaluated at a 
distance Z0 (typically in the range 15 mm to 35 mm). This is 
the axial distance between the surface of the weight and the 
centre of the magnet, directly below [2]. Equation (4) is an 
especially convenient relation when discussing induced 
magnetization, although a more versatile formalism was 
developed in [2].  
 Unlike the previous methods, a susceptometer measurement 
might in principle affect the value of Hp . This will happen if 
Hp is a function of the small induction field produced by the 
susceptometer magnet at the base of the sample. 
  

4. EXAMPLES 
 
 To illustrate these points, we have made extensive 
measurements of samples with very different magnetic 
properties. Three test instruments were used: a Lakeshore 
model 450 gaussmeter with transverse probe [8]; an Applied 
Physics Systems model 533 miniature 3-axis probe [8] (with 
our own electronics added); and a susceptometer based on a 
Mettler-Toledo UMT5 balance [8], with a cylindrical magnet 
of moment 0.12 A m2. 
 For a spherical sample of radius R and no permanent 
magnetization, the change in  the vertical component of the 
magnetic induction directly below the sample (Z0 ≥ 0) 
produced by its presence is given by 

3
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where is the Z-component of the left-hand side of (1). For 
a cylinder of height L and radius r, the equation becomes 
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with (1) modified as described in Section 2.1. Unlike (5), 
which is a general result, (6) is the asymptotic limit for χ → 0. 
 
 4.1 Brass cylinder 
The first sample tested is a brass cylinder with dimensions L = 
42 mm and r = 30 mm. Susceptometer measurements showed  
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that χ = 0.078(8) for this sample. We thus estimate that, in our 
laboratory, µ0Mi,Z = 3.2(3) µT. Using a Hall-probe gaussmeter, 
BZ − BE,Z was measured as a function of the distance Z0 
between the bottom of the cylinder and the probe. The resulting 
data are plotted with square symbols in Fig. 1. The curve is 
fitted using (6), where Mi,Z is the only adjustable parameter. 
The result is µ0Mi,Z = 4.05(6) µT. This is higher than estimated, 
leaving the possibility of a contribution from Mp,Z which is 
positive in sign and significantly smaller in magnitude than the 
induced magnetization. 

 
Fig. 1. Data obtained from a brass cylinder. 

 

 The same sample was measured using a fluxgate 
magnetometer having a ring-core sensor. Data were taken at 
three points, two of which are the triangles shown in Fig. 1. 
The distance Z0 is measured from the base of the sample to the 
centre of the ring, whose diameter is 15 mm. The third point 
was taken at a spacing of 82 mm, where the measured intensity 
was found to be about 20% greater than that predicted from the 
extrapolated curve, so that the inferred value of µ0Mi,Z is 
5.0 µT. The intensity measured at this point is 80(10) nT, an 
indication of the great precision of fluxgate sensors. 
 An additional point was taken with the fluxgate sensor 
oriented along the E-W direction, where the ambient induction 
is near zero. Placing the cylinder so that it was coaxial with the 
sensor axis and with the base a distance Z0=52 mm resulted in 
a reading of 32(10) nT, from which we may estimate that 
µ0Mp,Z = +0.75 µT, considerably smaller than µ0ME,Z. 
 Susceptometer measurements were made at the two points 
indicated by diamonds in Fig. 1. As explained above, the 
susceptometer is sensitive to field gradients. In order to plot 
susceptometer data on Fig. 1, it was necessary to make use of 
(6): first, the gradient of (6) was calculated and combined with 
(4) to estimate µ0Mi,Z ; then (6) itself was used to calculate Bi,Z. 
The susceptometer magnet produces an induction at the base of 
the sample and this is five times greater in magnitude at the 
closer of the two settings, amounting to about 1.2 mT.  

 Normally, only one point would be measured for routine 
work. That the data of Fig. 1, as well as the point at 82 mm, fall 
within 25% of the curve is an indication of the practicality of 
the theoretical model as well as the suitability of the various 
instruments used to make the measurements. It is possible, but 
by no means proven, that the field produced by the 
susceptometer magnet influenced the result at a spacing of 
27 mm (the susceptibility measured at the two spacings was the 

same). Finally, magnetometer measurements in the E-W 
direction suggest that this sample has a permanent 
magnetization along its axis, the magnitude of which is much 
less than Mi,Z and the sign of which is positive. This inference 
agrees semi-quantitatively with the discrepancy between 
inferred values of the magnetization and the a priori estimate 
of Mi,Z. 

 
 4.2 Ferromagnetic weight 
 For purposes of illustration, we have also carried out 
measurements on a ferromagnetic 500 g weight (χ >>1). The 
weight is very old and is made of a solid piece of metal, 
possibly nickel. The body is cylindrical with height 
approximately equal to diameter (42 mm) and there is a narrow 
lifting knob on the top. Using (1) with N = 0.26 [7], we 
estimate that µ0Mi,Z ≈ 160 µT. 
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cylinder. Data obtained from the Hall probe (squares), fluxgate 
(triangles) and susceptometer (diamonds) are shown in Fig. 2. 
A single-parameter fit of the Hall-probe data to (6) is shown as 
the curve in Fig. (2) with µ0Mi,Z = 107(4) µT. We note, 
however, that the data are not randomly distributed about the 
curve. In particular, we would not expect that extrapolation of 
the curve to greater Z0 would be very reliable. Indeed, a data 
point taken with the fluxgate sensor at Z0 = 82 mm is well 
above the extrapolated curve, leading to an inferred 
magnetization of about 155 µT. With the sensor oriented along 
the E-W direction and the cylinder placed so that it was coaxial 
with the sensor axis and the base a distance Z0 = 82 mm from 
the centre of the sensor, a reading of −168(10) nT resulted, 
from which we may estimate that µ0Mp,Z = −21 µT, 
considerably smaller than the a priori estimate of µ0ME,Z. 
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Fig. 2. Data obtained from a 500 g ferromagnetic weight. 

 
 4.3 1 kg mass standard in stainless steel 
 We take as a final example a 1 kg mass standard in stainless 
steel. Its manufacture predates OIML R111 [1]. Nevertheless, 
its shape and physical properties approximate a standard of 
class E2. Susceptometer measurements showed this weight to 
have a volume magnetic susceptibility χ = 0.0108(11). We can 
use (1) to derive the induced magnetization µ0ME,Z = 
0.46(5) µT when BE,Z = 42.8 µT. This weight was selected for 
study because the permanent magnetization along its axis is 
considerably larger in magnitude than the induced 
magnetization. 
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 Results obtained with the three instruments used at different 
settings of Z0 are shown in Table 1. The last line in the table is 
the result when the fluxgate sensor is oriented along the East-
West direction and the weight is placed horizontally so that its 
base is toward the sensor and its axis aligned with the sensor 
axis. All instruments were used at a spacing of 52 mm, 
although it is evident that the precision of the Hall probe is 
much less than that of the other two devices. Type B 
uncertainties (including inadequacies of the model) are not 
included in the standard uncertainties given in column 3 of the 
Table. Column 4 is obtained by subtracting 0.46 µT from 
column 3, except on the last line where the induced 
magnetization is negligible. Results are consistent to within 
about 25%. 

 
5. CONCLUSIONS 

 
A Hall-probe gaussmeter with a vertically-oriented sensor 

centred any distance Z0 below the weight measures Bi,Z 
directly, so that Mi,Z may be inferred from (6) and then 
compared with (1), the a priori prediction. A significant 
discrepancy may be attributed to M p

r
. A fluxgate 

magnetometer may be used in the same way. However, since 
the magnetic induction may vary over the considerable size of 
some fluxgate sensors, data obtained can be difficult to 
interpret. Ideally, Z0 should be significantly greater than the 
characteristic dimension of the sensor (the diameter of the ring, 
in the case of a ring-core design). Nevertheless, we see that the 
fluxgate results at Z0 = 11 mm, which is less than the core 
diameter, give reasonable results and one may wonder why. 
The influence of sensor size should be more pronounced when 
measuring small weights but even in these cases (not reported 
here) we have found that results obtained with the ring-core 
sensor remain consistent with those from the Hall probe. 

We suggest the explanation is that the ring-core geometry 
may be self-compensating for the sample configurations 
discussed above. Simple (but possibly naïve) calculations 
carried out by the author tend to confirm this. These 
calculations are based on a two-dimensional model described 
by Clarke [9], but with additional assumptions in order to treat 
nonuniform fields such as those due to a magnetic point dipole. 
Further work in this area will be necessary before firm 
conclusions can be drawn. 

In any case, it is interesting to note that results obtained 
from samples oriented first vertically and then horizontally in 
the East-West direction may be combined to yield a value of 
Mp,Z as well as a rough value of χ (or N, if χ >> 1). Perhaps this 
feature might be exploited for routine screening of materials. 

A susceptometer measures the gradient of Bi,Z at some 
distance Z0 below the weight, and thus the measured value of  
Mi,Z may be inferred from the gradient of (6), combined with 
(4). We point out that this algorithm is equivalent to a more 
general method of computing Mi,Z already published [2]. 

Table 1. Data obtained from 1 kg stainless steel weight. HP=Hall 
Probe; FG=Fluxgate; S=Susceptometer. 

 
Z0  

/mm 
BZ-BE,Z 

/nT 
µ0MZ,tot 

/µT 
µ0Mp,Z 

/µT 
instrument 

2 1000 2.3(2) 1.9 HP 
11 510 1.90(3) 1.5 FG 
22 288 1.95(6) 1.5 S 
27 274 2.40(7) 2.0 S 
32 240 2.56(8) 2.1 S 
32 225 2.4(1) 2.0 FG 
52 300 7.3(3.0) 6.9 HP 
52 97 2.4(2) 2.0 FG 
52 86 2.15(10) 1.7 S 
52 79 2.0(2) 2.0 FG (E/W) 

 

Inferred values of Mi,Z will have an unwelcome dependence 
on Z0 for all methods unless (6) is a realistic model. In the 
special case that permanent magnetization in the vertical 
direction is uniform, the magnetization in the numerator of (6) 

will contain this additional term and the same arguments 
apply. Since an induced magnetization iM

r
 is unavoidable in 

most mass laboratories, a requirement that ip MM
rr

<<  would 

seem to be unreasonable.  
If the permanent magnetization is non-uniform, there is no 

simple relation such as (6) to connect measurements of 
magnetic induction in free space with the internal 
magnetization of the weight. 
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