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Abstract − The paper presents a method that is an attempt 
to solve the problem of non-linear approximation of 
geometrical elements according to Chebyshev norm. On the 
base of general two step algorithm it performs an evaluation 
of minimal deviation from maximal values of measured 
shapes driving to the optimal solution on the iterative way. 
The proposed method implemented for some geometric 
features has been verified for a many samples of simulated 
and measured datapoints.  
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1.  INTRODUCTION 
 
Higher requirements faced to the coordinate measuring 
machines connected mainly with their coupling with the 
production processes and growing quality demands rise a 
necessity for producers of measuring software building new, 
accurate and efficient evaluation routines. The inspection of 
dimensional and tolerance specifications, expressed by 
technical documentation by means of CMMs leads to 
mathematical identification of geometric features associated 
with the actual, measured part and as a result to 
determination of its geometric parameters (the form, size 
and position deviations). The universal way of proceeding 
applied both to regular geometric features and freeform 
surfaces comprises of two steps. The first consists in fitting 
the ideal-form features for the sampled points, involving the 
approximation procedures, and followed by optimisation of 
the achieved results according to the established best fit 
criterion. Only then, in the second step the geometric 
deviations are calculated.  
 

1.1.  The problem definition 
The approximation task may be formulated in a  

different way. In the regular geometric features 
measurements area it can be posed as bringing of the if  
function (2), represented by set of its values close to F  
function, given by known analytical formula (1):  

 0),( =pxF , (1) 

where: Tzyx ],,[=x is a vector of coordinates of datapoints; 
T

mpp ],...,[ 1=p is a vector of parameters to be optimized; 
m =number of unknown parameters; the superscript T 
denotes the transposition.  

 nippzyxFf miiii ,...,1;0),...,,,,(),( 1 =≠=px ; (2) 

Thus the error of approximation is defined by (3).  

 Ffe i
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u −= inf . (3) 

*F - element, satisfying the equation *Ffe iu −=  is called 

an optimal element.  
It assumes that the measure of an approximation error is 
defined by a general pL  norm equation: 
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where: ir  = Ffi −  is the residual error between ith real 
datapoint and the ideal-form geometric feature fitted to these 
points, and p  is an exponent: p =1,..., ∞ , n =number of 
datapoint. 

 

1.2. The Chebyshev norm 
In coordinate measuring technique two kinds of norm 

function are most commonly used:  
• in the event of p = 2  the 2L norm is defined as a 

Euclidean length residuum.  
• in the event of ∞=p  the ∞L norm is defined, known as 

Chebyshev norm: 

 irsup=∞r . (5) 

A Chebyshev approximation (also commonly called 
“minimax approximation”) minimizes the maximum 
distance between data and the approximating function:  

 )(maxmin p
p

i
i

r ⇔ ∞− Ff
p

min . (6) 

The use of Chebyshev norm is indicated in many cases 
where the residuals of the fit are known, in particular for all 
approximation of an empirical nature, where residuals are 
dominated by the inadequacy of the approximation rather 
than the errors of the measurement being approximated.  
Furthermore, the use of Chebyshev norm is justified by the 
fundamental task of metrological software i.e. assessing the 
form deviations, according to minimum deviation zone 
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concept recommended by ISO 1011 [1] that is completely 
mathematically and geometrically interpreted.  
In practice, the wide spread use of 2L norm arises from 
facile and simple accomplishing of approximation methods 
results.  
However, the minimax problems (6) in context of the non-
linear, complicated functions of multiply variables bring to 
complex optimization problem, thus many algorithms have 
been developed for finding Chebyshev solution (6). To 
avoid the following hence inconvenience a computational 
method implementing technique of iterative improvement of 
optimal solution is suggested in this study.  
 

1.3. Review of minimax algorithms 
Over recent years several approaches have been considered 
and published [2]. Only some of them, which have had a 
significant impact on construction efficient methods along 
these ideas and have affected proposed method are quoted in 
the section below.  
One of the earliest methods for solving the non-linear 
discrete minimax problem was the method provided by M. 
R. Osborne and G. A. Watson [3-4], proposed for the first 
time in 1969. In their method a linear approximation of the 
non-linear minimax problem was used, in accordance with 
(7). 

 
i

Tj
i

j
i ff tpp

t
)()(maxmin '+ . (7) 

where: j
if  denotes the gradient of if at the point jp  at the 

thj − step iteration. The minimizer jt  was found 
implementing the linear programming. The theory given in 
the M. R. Osborne and G. A. Watson paper required that the 
successive matrix of j

if  satisfied the Haar condition, and in 
that case convergence to a stationary point was established. 
In 1971 M. R. Osborne had relaxed the Haar condition 
assumption for the ∞L  algorithm and proved that the 
method was quadratically convergent. This method has been 
extended by D. H. Anderson and M. R. Osborne [5] in 1977, 
using the polyhedral norm formulation to provide an 
algorithm for general class of discrete non-linear 
approximaton problem, in particular 1L  and maximum norm 

problems. The length step of the minimizer jt of (7) was 
adjusted during the iteration. The algorithm considered was 
similar to the Gauss-Newton method for the non-linear least 
squares problem.  
Basing on the formulation of (7) K. Madsen [6] incorporated 
trust regions in the M. R. Osborne and G. A. Watson 
method. The linearized problem was solved there, subject to 
a local bound on the variable t . Above mentioned methods 
belong to first-order methods, what means that they are 
based on first derivatives only. They do provide fast 
convergence to the neighbourhood of a solution. In the event 
of the solution is singular the rate of convergence may 
become very slow.  
There are many other methods with referring to second 
order approximation. One of them was elaborated by J. W. 
Bandler in 1985 [7] in the form of the non-linear minimax 

algorithm. It was a combination of the first order method 
and an approximate second order method. A quasi Newton 
method was used there to solve a set of non-linear equations 
that supplied the local solution. Switching criteria ensure the 
global convergence of this combined method.  
 

2. THE MATHEMATICAL MODEL 
 

The problem can be generally posed as assessment of 
*p values satisfying the (6), where the value of residuum 

)( pir is expressed by (8). 

 )( pir = )( pii Ff − ; ni ,...,1= . (8) 

The basis of the method is bringing the problem of non-
linear approximation to a sequence of equivalent linear 
problems satisfying the conditions provided by M.R. 
Osborne and G. A. Watson model [3-4].  
 

2.1.  Assumptions 
A. The function (1) is sufficiently smooth and has 
continuous partial derivatives including second order in the 
neighbourhood and at a given point p .  
If assumption is valid function the )( pF  can be then 
expanded into Taylor series in local neighbourhood p (9).  

 iF ( pp δ+ ) )(0)()( 2ppp δδ +∇+= pFF ii , (9) 

where : 
k

i
i p

F
F

∂
∂

=∇ = ith - row of the Jacobian matrix: 

F∇=M ; mk ,...,1= ;  )(0 2pδ =omitted higher order 
elements.  
B. The matrix M  has full rank m .  
Substituting expression (9) for )( pF  in equation (8) follows 
to the set of n linear equations having m unknown 
quantities pδ thus the non-linear optimization problem 
reduces to the linear one.  
 

2.2.  An algorithm 
The task of optimization is solved iteratively by an 
algorithm incorporated principally in two stages, which is a 
modification of the usual Newton method for finding a zero 
of a vector function of several variables. This method 
combines the rapid local convergence of classic Newton’s 
method with a globally convergent strategy that ensures 
some progress towards each iteration.  
Step 1 of iteration: Calculation of t  vector to minimize 
(10). 

 tp )()()( jjj FpFpf ∇−− . (10) 

This basic step of Newton method, which formally applies 
to any norm determines a direction of progress t . In the 
original M. R. Osborne, G. A. Watson, D. H. Anderson 
method the t  is obtained by linear programming, however 
this way may be occasionally insufficient and can provide 
afterwards convergence to not a stationary point [7]. To 
avoid these drawbacks an alternative that deals with 
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minimization problem (10) for calculating such thj −t  
moving a residuum Mtr −  closer enough to minimum by 
applying a singular value decomposition approach known as 
SVD technique [8] (that explicitly constructs orthonormal 
bases for the null spaces and range of a matrix).  
The SVD technique assumes that any nxm  matrix M , 
whose number of rows is greater then or equal to number of 
columns )( mn ≥ can be expressed as a product of an 
orthogonal matrix )(nxmU , a diagonal matrix W  and the 
transpose of an orthogonal matrix )(nxnV (11).  

 )(M = )(U *
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Rearranging (11) the method finds the solution t  closest in 
the least square sense among all possible values, so that with 
nonsquare matrices looks like this:  
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This variant is relatively easy to minimize and can be used 
no matter haw singular the matrix M  is and whether it is 
“almost” unique.  
At the point jp  the value of jt solves the (10), and let a 
result be given by (13).  

 jĥ = 
t

min tpp )()()( jjj FFpf ∇−− ; with t = pδ . (13) 

• Step 2 of iteration: Calculating of an optimal step 
coefficient γ  from the range (0< γ <1) to minimize 
(14).  

 )()( jjj Ff δppp γ+− . (14) 

To determine a suitable value for jγ  let θ ∈  (0,1) be given 
and be defined a set: { },...,,1 2θθ=Π .  
Let the function ),( γψ jp  be defined, such that: 

 ),( γψ jp =
)ˆ(

1

jj

jj

hh
hh
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− +

γ
; where:  

 )()( jjj Ffh pp −= , and 

 )()(1 δppp γ+−=+ jjj Ffh . 

Then, it is possible to choose a step length jγ  as a largest 
element in Π  satisfying (15).  

),( γψ jp ≥ τ ,   (15) 

where: τ  is any fixed value satisfying: ( 10 << τ ), 
independent of j .  

A point *p  is a stationary point of )( pFf − , if:  

 tFfhFf
t

)()(min)( **** ppp ∇−==− . (16) 

It results from the above definition, that:  

 jj hFf ˆ)( ≥− p . (17) 

If the algorithm does not terminate in a finite number of 
iterations, then the sequences of { jh } is convergent.  
The proof quoted from [5] is as follows: If jp  is not a 

stationary point )( jFf p−  it follows from (17) that:  

 )(ˆ jj pFfh −< .  

From (15) it leads to (18). 

 )ˆ(1 jjjjj hhτγhh −−≤+ , (18) 

so that the sequence { jh } is decreasing and bounded below, 
and hence converges.  
• Step 3 of iteration: If jγ  has an appropriately chosen 

value the values of p  parameters are updated 
respectively:  

 1+j
kp = j

kp + jγ jpδ . (19) 

During the iterations the estimated values of 1+j
kp  are used 

for building a new Jacobian matrix for “step 1” of the 
described algorithm.  
On the input the values of vector op  specifies the initial 
guess for the first recursion of algorithm. The sequence 10

 to 
30 steps is continued until the convergence will have been 
achieved i.e. the normalized residual will become less than 
the specified tolerance or if algorithm will not reach the 
specified convergence in the maximum number of iteration.  
 

4.  THE IMPLEMENTATION AND RESULTS 
, 
The method was implemented for some several geometric 
elements derived from a standard software package of IOS 
coordinate measuring machines. The essential mathematical 
routines were developed used Delphi Borland tools.  
The implementation was applied under numerical tests 
involving generated reference data sets and then according 
to the empirical data sets from coordinate measurements.  
Generating data have been treated similarly to the created 
reference for Gaussian approximation problem taking into 
cosideration sufficiency conditions for a solution to the 
minimax approximation problem (i.e. for Chebyshev fitting 
circle the datapoints lie between two concentric circles each 
other apart from an overall form deviation) [9]. 
As an example some results of circle fitting problem is 
revealed below. Before all others the procedure has been 
checked for simulated circular profiles. Calculations have 
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been performed for several 100-datapoints samples. Since 
time and number of recursions are the crucial factors 
affecting on effectiveness of the method they were 
particularly under examination. Then the calculation results 
have been compared to the results of standard Gaussian 
procedures. These latter tests show that the number of 
recursions are not affected considerably by disadvantageous 
choice of starting point although the Chebyshew iteration is 
more time consuming than least squares procedure.  
Algorithm convergence and its numerical effectiveness 
depend mostly on determination of proper direction of 
optimisation t and the choice of appropriate coefficient step 
γ .  
 

 
Fig. 1. The results of comparison of maximum deviation values 

assessed from Gaussian and Chebyshev approximation for sample 
m=100 datapoints.  

 
It can be observed also that the assessed values of geometric 
maximum deviations are significant smaller than those 
obtained using Gaussian approximation and can differ up to 
40% as “Fig. 1” presents ( 20 seriees of calculations). 
Finally, the procedure has been applied for samples of 
experimental datapoints.  
 

 
Fig. 2.  The result screen of Chebyshev approximation for 

experimental sample m=30 data datapoints. 
 
The “Fig. 2” and “Fig. 3” show the graphic result screens to 
Chebyshev and Gaussian approximation respectively, which 
expressively demonstrate how these two fitting techniques 
considerably distinguish one from the other when the data 
contains “wild” point. One argues that the 2L  norm does not 
seem to be a suitable measure of goodness of fit in these 
cases.  

 
Fig. 3. The result screen of Gaussian approximation for 

experimental sample m= datapoints. 
 

5.  CONCLUSION 
 

The method has been proposed is an attempt to solve a 
discrete minimax approximation problem. It has been 
established generally on M. R. Osborne, G. A. Whatson, D. 
H. Anderson strategy. Through certain simplifications (i.e. 
linearisation of approximating problem) it allows use of the 
linear algebraic numerical tools. It has been implemented to 
some geometric elements and tentative numerical tests have 
proven this software successful in solving of data fitting 
problems, however it is essential to continue its verification 
and to access its numerical stability and accuracy.  
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