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Abstract − The paper discuss the general methodology 
for the design of recursive digital filters with phase 
correction. The method for the approximation of the 
Gaussian characteristic presented below ensures the smallest 
possible error for a given filter order. It has been shown that 
by selecting appropriate initial values of the filter we can 
eliminate the so-called edge effect and evaluate the whole 
profile being registered. To describe the filter transfer 
function, the discrete incremental difference operator (delta 
operator) is applied in place of  the usual shift operator z. 
This increases the accuracy of representation of filter 
parameters and decreases the number rounding errors.  
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1.  INTRODUCTION 
 

It has been assumed that roughness, waviness and form 
constitute the geometrical surface structure. These features 
differ in the range of components wavelengths or, in other 
words, range of components spatial frequencies. The 
components with high frequencies or short wavelengths are 
referred to as roughness, those with medium frequencies are 
called waviness and, finally, those with small frequencies 
are considered as form. To separate the above features, 
analog and digital filters are used in surface metrology. 
Previously, analog filters called 2RS filters were applied 
mainly because the whole measuring path had been realized 
in the analog technique. However, 2RC filters cause a phase 
shift and in consequence a considerable profile distortion. 
Recently, analog filters were replaced by various digital 
filters [1], the most popular of which at the moment is one 
with a frequency transmission characteristic described by 
the Gaussian curve [2]. 

The most natural is to implement a Gaussian filter as a 
filter with a finite impulse response. This approach requires 
a great deal of calculation; yet the increase in the 
microprocessor speed makes the disadvantage less 
troublesome. A more important drawback is the difficulty in 
the determination of the mean line for the first and last 
profile sections (hereafter referred to as the edge effect). The 
methods applying FFT and convolution algorithms are also 
used, see [1] and the references within. In [3], a fast 
recursive algorithm is derived using the central limit 
theorem for the Gaussian transmission characteristic 
approximation.  

This paper deals with the general methodology for the 
design of recursive digital filters with phase correction. 
Though the considerations concern only filters with a 
characteristic described by the Gaussian function, a similar 
technique can be applied to the design of filters with any 
desired transmission characteristic. The method for the 
approximation of a Gaussian characteristic presented below 
assures the smallest possible error for a given filter order. It 
has been established that, by selecting an appropriate initial 
filter value, we are able to eliminate the edge effect and, 
therefore, evaluate the whole registered profile. 
Furthermore, to describe the filter transfer function, the 
discrete incremental difference operator (delta operator) is 
applied in place of the usual shift operator z. This increases 
the accuracy of the representation of filter parameters and 
decreases the rounding errors. It is especially important 
when the filter is implemented by means of the reduced 
word length arithmetic. 
 

2.  APPROXIMATION OF THE TRANSMISSION 
CHARACTERISTIC OF THE GAUSSIAN FILTER 

 
There are two stages in the design of recursive digital 

filters. First, an appropriate  transfer function of an analog 
filter is selected. Then, a digital equivalent of the analog 
filter is determined. When designing analog filters, we try to 
select a filter transfer function in the form of a proper 
rational function in order to obtain appropriate accuracy of 
the approximation of the desired filter characteristic. The 
characteristic of a low-pass Gaussian filter defining the 
damping of the wave with the length  is described by the 
following equation 
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where cλ  is the filter cutoff length. The coefficientα  is 
usually selected in order to assure filter damping for cλ=λ  
equal to 1 . This yields  2/

 π=α /2ln . (2) 

Defining the normalized frequency λλ= /cΩ , the filter 
characteristic can be expressed in the form of 

  (3) ( )2)( Ωαπ−=Ω eH
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One of the methods for the approximation of the function 
by means of a rational function is to apply the well 

known property 
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By selecting an appropriate value of the filter order 2 , we 
obtain the following approximation of the Gaussian filter 
characteristic 
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The additional coefficient β  is introduced to rescale the 
frequency slightly so that for the cutoff frequency 1=Ωc , 
the filter damping equals exactly 1 . Hence 

. For instance, for , we get 
2/
4=2ln/)12( /1 −=β nn

09187,1=
n

β . The approximation method presented here was 
proposed in [3], though its derivation was slightly different, 
i.e. the central limit theorem was applied in place of 
property (4). 

However, the convergence of the sequence  is 
relatively slow, so, in order to obtain good accuracy of the 
approximation of the Gaussian filter characteristic, it is 
necessary to apply an appropriately high filter order. For 
example, if we assume that  [3], the approximation 
error will be less than 0.5%. A much better approximation 
for a given filter order will be obtained if we apply the 
expansion of the function e  into the Taylor series 

nnx )/1( +

16=n

x

 ...
!3!2

1
32
++++=

xxxex  (6) 

Taking into account the first  of the expansion 
components, we get the following approximation of the 
Gaussian filter characteristic 
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Similarly, the coefficient  is introduced to assure 
. For instance, for  we need to assume 

that . Still, better approximation accuracy can 
be achieved with the optimization method. Let us formulate 
the following problem: for a certain number , let us find 
the parameters , which minimize the index  
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where  is a number several times greater than the cutoff 
frequency. Thus, the index Q  represents the quality of the 

approximation function  by means of the rational 
function. It is most reasonable to assume that the initial 
values in the optimization procedure are 

m

xe−

!/1 iai =  For 
example, for 4=n , we obtained the following optimal 
parameter values  
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As a result of the optimization the value of the objective 
function decreased about twenty times. An appropriate filter 
characteristic is obtained assuming that  
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Fig. (1) shows a deviation of three transmission 
characteristics (5), (7), (9) from the Gaussian filter 
characteristic. Fig. (2) presents a deviation of the 
transmission characteristic (9) from the Gaussian filter 
characteristic for the three values . 5,4,3=n

0.01

Fig. 1. Deviation of three transmission characteristics (5), (7), (9) 
from the Gaussian filter characteristic (lines 1,2,3 respectively). 
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Fig. 2. Deviation of the transmission characteristic (9) from the 
Gaussian filter characteristic for the three values 5,4,3=n  (lines 

1,2,3 respectively).. 
 
We can see that the maximum deviation of the filter 
characteristic (9) from the Gaussian filter characteristic is 
less than 0,5% for the value  equal to 4. n
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3.  DISCRETE FILTERS 
 

Details of the digital implementation of analog filters 
can be found in the literature concerning the digital signal 
processing. That is why we shall discuss the problem briefly 
only to make the presentation complete. Substituting 

, where  is an imaginary unit, we obtain a  
transfer function of the Laplace filter . It should be 

noted that  is a function of . Thus, if  is one of 
the filter poles then −  is the filter pole too. In 
consequence, the filter  transfer function can be represented 
in the form of , where  is 
a stable  transfer function, i.e. with all the poles placed in 
the left half-plane . Applying the bilinear 
transformation  
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where  is the number of samples within the cutoff 
length, and 

cN
z  is a variable of the Z transform (or the 

forward shift operator), we can transform an analog filter 
into a digital one . The filtration process will consist 
of two stages: the forward signal filtration, in which the 
filtered signal depends on the previous values of the input 
signal, and again the backward refiltration, in which the 
output filter depends on the future values of the input signal. 
The filter does not cause any signal phase shift, because the 
backward filter corrects the phase shift caused by the 
forward filter.  

)(zHon

When implementing a digital filter, we should pay 
particular attention to the accuracy of representation  of the 
filter coefficients. If the sampling length is small, then the 
filter poles are located close to the point . This 
makes it necessary to take into account many significant 
digits of the filter coefficients. Let us consider the example a 
fourth order filter, , and the number of samples within 
cutoff . If we take into account the values of the 
coefficients with an accuracy of eight significant digits (27 
digits in the binary representation) we will observe the filter 
instability. Only if 14 significant digits are considered (45 
digits in the binary representation) will the accuracy of the 
Gaussian filter characteristic representation be satisfactory. 
It is particularly essential in the case of filter implementation 
by means of a processor with reduced word length 
arithmetic. Moreover, a small sampling length causes a 
considerable increase of rounding errors of filtering 
algorithm [4]. To overcame these disadvantages, the 
operator  is replaced with the delta operator defined by [4] 
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which in place of (10) gives the transformation 
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where cc N/λ=∆  is the sampling length. In this way we 
obtain a transfer function expressed in terms of the delta 
operator, )(δonH

)(

. One of the interesting properties of the 
delta operator is the fact that the coefficients of the transfer 
function  δonH

0→

 converge to the coefficients of the 
transfer function of an appropriate analog filter, 
when ∆  (with the cutoff frequency cc λπ=Ω /2

)(δ

). The 
method of the implementation of the filter defined by means 
of the delta operator is as follows. Let the quadruple 
(  represents the state space 
realization of the transfer function . The equations 
describing the forward and backward part of the are the 
following 
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backward part of the filter: 
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where x  is the input of the filter,  are the states of the 

forward and backward parts of the filter respectively,  is 
the output of the filter and, finally,  is the total number of 
profile samples. 

bf vv ,

N
my

 
4.  EDGE EFFECT ELIMINATION 

 
The initial values of the filter state variables,  and 

, have direct influence on the determined values of 
the mean line at the ends of the registered profile. This may 
cause the occurrence of so-called edge effect consisting in a 
considerable deviation of the determined mean line from the 
expected value at both profile ends. Taking into account the 
speed of the filter transient response attenuation, we can 
conclude that the edge effect can influence about a half of 
the cutoff at both ends of the profile. Thus, this part of the 
profile should not be analyzed. This would be a 
considerable drawback of the filter, as the length of the 
registered profile is often too short to reject its fragments. It 
appears, however, that careful selection of the initial values 
of the filters states can eliminate the edge effect. 

)1(fv

)(Nvb

Let us note that the edge effect will cause an increase in 
the mean square difference between the profile and the 
determined mean line. Then, it seems reasonable to demand 
that the initial values of the filter  be appropriately 

selected in order to minimize the index 
)1(fv

 . (15) ( ) 1
1

2
1 )1(,)()()( vviwixvQ f

N

i
=−= ∑

=

Since the index is a square function of the variable , the 
problem of the minimization of the index (15) can be solved 
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analytically. Let us note that the filtered signal  can be 
represented as 

w

fv

 , (16) )()()( iwiiw o+η=

where  is the filter response for initial value , 

while is the filter response for the zero input signal. From 
the filter equations we have 
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Equating the partial derivative 1/ vQ ∂∂  to zero, after some 
manipulations we obtain 
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The filtration algorithm is thus divided into four steps: 
1.  determination of the filter response for the initial value 

, 0)1( =fv

2.  determination of the initial values of the filter v  from 
formula (18), 

1

3.  determination of the filter response for the zero input 
signal and , 1)1( vv f =

4.  determination of the filtered signal from 
. )()()( iwiiw o+η=

 

 
Fig. 3. Example of a roughness profile with a significant form 

component and the determined mean line. 
 

The initial value of v  of the backward filter part should be 
selected in a similar way. Fig. (3) shows a diagram of a 
roughness profile with the determined mean line. This is an 
example of a profile with a significant form component. We 
can see the described method of filter initial values selection 
prevents the occurrence of the edge effect.  

N

 
5.  CONCLUSION 

 
The results show that even for an eighth order filter the 

optimization of the filter parameters assures a very good 
approximation of the Gaussian filter with an approximation 
error less than 0.5%. The analysis of the profiles for various 
surface types testifies that the edge effect does not occur  if 
the initial filter values are selected by means of the 
described method. 
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