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Abstract − In this paper, a task-specific measuring 

capability criterion is described, applicable to select or 
validate measurement systems that provide data to set the 
process aim, when the techniques known as “sequence of 
values” or “difference chart” are used. The criterion is based 
on the estimation of the “uncertainty of the process mean”, 
which characterizes the dispersion of the values that could 
reasonably be attributed to the process mean after the setting 
procedure. The proposed criterion is compared with the 
discrimination ratio and with the uncertainty per tolerance 
ratio, showing that the last one fails to predict the measuring 
capability for aim-setting operations.  
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1.  INTRODUCTION 
 
The just-in-time manufacturing strategy is one of the 

most successful answers to the current market conditions: it 
improves adaptability to product and market changes while 
reduces costs by eliminating stocks. To be reliable, just-in-
time production needs a supply chain integrated by 
predictable processes, operating on target with minimum 
variance. In this environment, setting the process aim 
becomes a critical task, particularly when short production 
runs are the rule.  

Real processes are never on target. Due to the statistical 
properties of the methods used to set the process aim, the 
value of the true deviation from target remains unknown, so 
leading to the concept of uncertainty of process mean. This 
uncertainty depends on three major factors: the process 
itself, the procedure used to set the process aim and the 
uncertainty of measurement (Fig. 1).  

A process has to be in statistical control before setting 
the process aim. No efforts should be wasted to regulate 
processes which mean and/or standard deviation vary in an 
unpredictable manner. After achieving the state of control 
by the use of control charts, several statistical techniques 
can be applied to identify weather or not the process mean is 
close enough to the target. Some of these techniques use 
also control charts to test the hypotheses that the process is 
on target. The technique of the sequence of values uses an 

individual value control chart with the central line set to the 
target value. The process is considered ready for production 
when a given number of successive measurements, usually 
ten, fail to indicate any out of control signal [1]. The 
technique of the difference chart is a variant of the former, 
to be used when the same process produces several part 
models of different nominal sizes [1]. Each point in the chart 
represents the difference between a measured value and the 
corresponding target value. Individual and difference charts 
can be also used for process monitoring, simply changing 
the operating mode once the process is on target. This makes 
possible using a single tool for the complete requirements of 
process operation. 
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Fig. 1.  Factors affecting the uncertainty of process mean 

 
Another possibility is to use  pre-control charts to set the 

process aim and, afterwards, to supervise production [2]. 
Nevertheless, pre-control charts limits are based on product 
specification and not on process, common-cause, variation. 
Because of this, pre-control is seriously handicapped for the 
assessment of statistical control, particularly when process 
capability is rather high [3]. Under such limitation, one may 
question about the ability of pre-control charts to set the 
process aim in an effective manner.  
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Other techniques to set the process aim can be found in 
the statistical process control literature: it is not interesting 
to present them here in detail. A common characteristic of 
all the techniques is that the uncertainty of process mean is 
affected by the procedure itself and by the number of 
measurements used to estimate the process mean and the 
process standard deviation. More accurate settings can be 
obtained increasing the number of sample units, but this 
results in higher operational costs and delays the production 
launch. Non-formal decisions, i.e. decisions not triggered by 
the statistical procedure, also affect the uncertainty of 
process mean, usually enlarging it. 

Uncertainty of measurement is expected to affect 
adversely the uncertainty of process mean. There are no 
quantitative studies to help defining whether or not a 
measurement system can be used to set the aim of a given 
manufacturing process. Because of this, general-scope 
capability criteria are used, like the uncertainty per tolerance 
ratio, the gage R&R% [4], the discrimination ratio [5] and 
others, accepting the hypothesis that a measurement system 
that satisfies these criteria will be accurate enough for any 
quality control activity. 

This paper proposes a task-specific measuring capability 
criterion, to be applied when measurements are used to set 
the process aim. The studies have been focused on the 
application of the technique of the sequence of values, but 
the results apply also to the difference chart technique. 
Several indices to the aim-setting performance have been 
studied: the number of parts (measures) needed to set the 
process aim satisfactorily, the number of process 
adjustments needed and the standard deviation of the 
possible process means that can be obtained after 
concluding the aim-setting procedure.  

It has been shown that only the standard deviation of the 
possible means is sensitive to the presence of measurement 
errors. This standard deviation has been used to quantify the 
uncertainty of process mean, that can be viewed as an index 
to the capability of measurement systems for process aim-
setting tasks.  

 
2.  THE AIM-SETTING TECHNIQUE 

 
This research has been centered on the application of the 

technique known as sequence of values (details about this 
technique can be found in ref. [1]). The technique considers 
two possible cases. The first one is when the process 
standard deviation is known, in such a way that control 
limits are already available when the first unit is produced. 
The second case, selected for this simulation, is when the 
standard deviation is not known and has to be estimated 
from the process outcomes. To do this according to the 
Shewhart rules for control charts, the standard deviation 
shall be computed using the mean of a dispersion statistic. In 
this case, the average of the moving ranges of order two is 
used:  
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where y are the measured values composing the sample and 
n is the sample size (n=10, as recommended by the 
procedure). Then, the estimated standard deviation is: 

2

ˆ
d
mR

y =σ              (3) 

being d  for moving ranges of order two. 13.12 =

The limits of the individuals chart are symmetrically 
positioned around the process target T and computed by the 
following equations: 

mRATLCLy ⋅−= 2           (4) 

mRATUCLy ⋅+= 2           (5) 

being  for moving ranges of order two. 66.22 =A
Once the control limits are available, the first ten values 

can be analyzed retrospectively. To interpret the chart, the 
four decision rules known as Western Electric Rules are 
applied (Fig. 2).  
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Fig. 2.  Western Electric decision rules for out of control signals 

 
If any out of control signal is detected, the available 

information is used to estimate the process mean and 
compute the value of the correction. After the adjustment, 
the process is operated and fresh sample units are obtained 
and measured, looking for out of control signals. If any, a 
new adjustment is done and more units measured. The 
procedure ends when ten successive units fail to show an out 
of control signal.   

Like any other statistical tool, the sequence of values 
technique produces outcomes subjected to uncertainty. 
Measured values and control limits are affected by sampling 
variation, producing different process means when setting 
the aim of the same process under repeatability conditions. 
The number of sample units used to set the process aim and 
the number of process adjustments are also subjected to 
heavy sampling variation.  

From this brief explanation, some interesting facts can 
be highlighted regarding the influence of measurement 
errors on process set up: 

A constant systematic error, affecting to the same extent 
all measured values, does not modify the control limits. 
In such situation, the interpretation of the chart leads to 
inaccurate adjustments, resulting finally in a process that 

• 
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operates deviated form target. The expected value of 
such deviation is the value of the systematic error.  

Random (e.g. repeatability) errors inflate the value of the 
estimated standard deviation, resulting in control limits 
that are farther from the target. Since the measured 
values will show also more dispersion, the effect of this 
kind of errors results dampened.  

• 

• Purely linear systematic errors, with value equal to zero 
at the process target, affect the estimated standard 
deviation. Errors with positive slope increase the 
standard deviation of the measured values, inflating the 
control limits. Errors with negative slope produce the 
opposite effect. The effect of linear systematic errors 
seems to be also dampened by the correlated behavior of 
control limits and measured values.  

The model applied in the research considers all these 
types of errors. It is described in the following section. 

 
3.  SIMULATING MEASUREMENT  

 
Measurement uncertainty is defined as “… a parameter, 

associated with the result of a measurement, that 
characterizes the dispersion of the values that could 
reasonably be attributed to the measurand” [6].  

Let us assume that the contributions to measurement 
uncertainty can be separated into two mutually exclusive 
groups of physical quantities, one including all random 
effects and the other, all systematic effects. Representing the 
uncertainty due to random effects by a normal random 
variable: 

( )2;0normal~ rrE σ            (6) 

the uncertainty due to systematic effects by a rectangular 
random variable: 

( )maxmax ;rrectangula~ EEEs −       (7) 

and assuming that both variables are statistically 
independent, the standard measurement uncertainty can be 
expressed as: 

( ) ( ) ( )sr eueuyu 22 +=          (8) 

( ) 2
2
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3 r

E
yu σ+=           (9) 

Equation (9) states that, for any value of the measurand 
within the process dispersion limits, the measurement result 
will be affected by a random error of standard deviation σ  
and by an unknown systematic error, which value is within 
the interval 

r

[ ]maxmax ; EE− .  

The mathematical model of the measurement process 
used in the simulation algorithm is consistent with the 
uncertainty statement in eq. (9): 

sysrand eexy ++=              (10) 

where y is the measured value, x the value of the 
manufactured characteristic,  an event of a random 

error and  the value of the systematic error. In terms of 

random variables: 

rande

syse

sysrand EEXY ++=             (11) 

Normal random variables have been used to model the 
manufactured characteristic and the random measurement 
error: 






 σµ 2 ; normal ~ ppX             (12) 

( )2
rand  ;0normal ~ rE σ             (13) 

In real measurement processes, systematic errors are a 
function of the value of the manufactured characteristic. It is 
widely accepted that, within the limits of process dispersion, 
most measurement systems present systematic error values 
that can be interpolated by a straight line. This condition is 
modeled by the following equation: 

( )Txesys −⋅β+α=              (14) 

where α is a constant systematic error and β is a factor 
determining the value of a linearly dependent error. To 
fulfill the condition imposed by the uncertainty statement, 
the values of α and β are chosen at random, in such a way 
that:  
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The values of α and β are maintained constant within 
each simulation run. This way, all the values of x generated 
for a complete aim-setting operation are affected by 
systematic errors obtained from the same pattern. To 
simulated the effect of the lack of knowledge, the operation 
is repeated, choosing new values for α and β.  

Figure 3 shows three different simulation outcomes of 
the model described by equations (10) to (15). The graphic 
in the top shows 100 error values obtained with 100=µ p ,  

1=σ p  and rE σ<<max . The graphic in the middle shows, 

for the same process, a case with rE σ>>max  and 

0≅α .The graphic in the bottom shows the outcomes when 

rE σ>>max  and β  is small. Note that the two last graphics 

have been obtained with the same values of  and . 

Thus, both error characteristics are consistent with the same 
uncertainty statement. 

maxE rσ
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Fig. 3.  Three sets of outcomes of the error simulation model 
 
 

4.  RESULTS 
 
The simulation algorithm implementing the aim-setting 

technique described in section 2 and the error model 
described in section 3 has been run to study the effect of 
measurement uncertainty. 

To get process-independent results, the manufacturing 
process mean has been set to 0=µ p

p

 and all the other 

parameters have been divided by σ . The domain of the 

uncertainty contributions has been defined by the following 
inequality: 
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For each point in the uncertainty component domain, a 
group of 100 cases has been simulated. Each case uses a 
different set of random error values and a different 
systematic error function, but fulfills the same measurement 
uncertainty. This way, it make sense computing an average 
performance within each group of 100 cases and linking 
such performance with the effect of measurement 
uncertainty.  

Three performance indices have been evaluated within 
each group, for all the points in the uncertainty component 
domain: 

The average number of parts (measures) needed to set 
the process aim; 

• 

• 

• 

The average number of process adjustments needed to 
set the process aim; 
The standard deviation of all the true process means, as 
obtained after the last process adjustment, when the aim-
setting procedure has declared the process “on target”:  

( )∑
=

µ−µ
−

=σ
m

i
resiresmean m 1

2
1

1         (17) 

where m is the number of cases in the group (m=100), 
iresµ  

is the mean of the process for each case, after ending the 
aim-setting procedure, and resµ  the average of the m means 

within the group.  
 The analysis of the simulation outcomes made evident 
the need to filter the results to eliminate statistical extremes. 
A small number of cases required an atypically high number 
of units and adjustments to set the process aim. These cases 
are caused by the underestimation of the process standard 
deviation during the initial run of 10 units, which itself 
causes a growth in the false alarm rate. Such condition will 
be surely avoided by an experienced operator, based on 
empirical information on how the procedure should 
function. Then, to prevent distortion of the averages, all 
cases presenting number of units that can be qualified as 
extremes or outliers, have been eliminated.  
 After filtering, it has been shown that the average 
number of units and the average number of adjustments are 
not affected by the presence of measurement errors. This 
makes them unreliable indices to measurement process 
performance, being so discarded for the purposes of this 
research.  
 It has been also shown that, regardless the measurement 
condition, the distribution of µ  within each group is 

close to normal. This brings 
ires

Tres ≅µ  in equation (17), in 

such a way that the sum can be now interpreted as “the sum 
of the square deviations from target”. The normality permits 
also expanding the coverage probability by the use of the z 
factor. This way, a 95% expanded uncertainty has been 
defined for the process mean: 
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meanmeanU σ= *96.1             (18) 

The behavior of this uncertainty within the domain of 
measurements uncertainty components can be viewed in the 
following graphic (Fig. 4): 
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Fig. 4.  The behavior of the uncertainty of process mean for 

different combinations of measurement uncertainty contributions. 
 
It can be noted that, when measurement uncertainty 

components are brought to zero, 95% of the process means 
obtained by the application of the sequence of value 
technique would lie within the interval pT σ±

p

. As 

uncertainty contributions grow, the uncertainty of process 
mean also grows. For the extreme case, defined by  

 and , the uncertainty of process mean 

grows up to 80%, in such a way that 95% of the true process 
means would lie within the interval 

pE σ=max pr σ=σ

T σ⋅± 8.1 . 

The surface depicted in Fig. 4 have been interpolated by 
polynomial regression, using a complete polynomial of 
order 2. The equation obtained follows: 

max

2
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2
max

2152.0

3295.02936.0

1606.02165.0

E

E

EU

r

r

rpmean

⋅σ⋅

−⋅+σ⋅

+⋅+σ⋅+σ=

      (19) 

This regression model allows explaining 75% of the 
variance present in the data ( ), so it can be used 
for most practical purposes.  

75.02 =R

This way, the uncertainty of process mean becomes an 
index to the capability of a measurement system for setting 
the process aim. Unlike other existing capability criteria 
(e.g. uncertainty per tolerance ratio, R&R% [4], Dr [5]), it 
does not seem necessary defining some empirical limit to 
distinguish capable and non-capable measurement systems. 
The information given by the index provides insight on the 
consequences that measurement uncertainty has on the 
quality of the manufactured characteristics. Knowing the 
peculiarities of the process at hands and the quality 

requirements, an engineer or technician could easily decide 
whether a measurement system can be used for the task or 
has to be improved.  

 
5.  DISCUSSION 

 
In this section, comparisons will be made between the 

uncertainty of process mean criterion and other measuring 
capability criteria. For the sake of simplicity, only two 
measuring capability criteria have been included, one based 
on the comparison with the standard deviation of the process 
(Dr) and other on the comparison with the tolerance 
( TolU ).  

According to Wheeler [5], the discrimination ratio Dr 
can be computed as: 

1
2

2

2

+
σ

σ⋅
=

e

mDr              (20) 

where mσ  is the standard deviation of part measurements 

and eσ  is the standard deviation of a repeatability error, 

evaluated according to [5]. A system leading to 4=Dr  (just 
capable according to Wheeler) will have: 

pe σ⋅=σ 365.0               (21) 

 Considering er σ=σ  and assuming that eE σ=max , to 

allow for some systematic residual errors that would not 
appear in the repeatability study (like calibration residuals, 
long-term drift in the environmental conditions, etc.), the 
uncertainty of process mean will result, according to eq. 

(19), U .  19.1=mean
This means that a measurement system considered 

capable according to the Dr criterion would probably 
produce less than 20% enlargement of the uncertainty of 
process mean. Nevertheless, care should be taken with the 
influence of unknown and residual systematic errors. If they 
are much bigger than the repeatability error, the uncertainty 
of process mean could grow drastically.  
  Let suppose now a measurement system presenting 
an uncertainty per tolerance ratio 2.0=TolU , highly 
common in industrial quality control. Suppose also that the 
uncertainty is composed by random and systematic 
contributions according to eq. (9), in such a way that 

rE σ=max . If the capability of the manufacturing process 

were 67.1≅pC , pσrE ⋅=σ= 884.0max . Replacing these 

values in eq. (19), the uncertainty of process mean results 

.  65.1=meanU

In this case, a measurement system that is found capable 
regarding the uncertainty per tolerance ratio, could affect 
heavily the performance of the sequence of values 
technique. A better uncertainty per tolerance ratio would be 
necessary (e.g. better than 1.0=TolU ), to maintain low the 
uncertainty of process mean.  
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 The difference between the two cases analyzed above 
can be explained with regard to the mechanism by which the 
measurement errors affect the position of the process. As it 
has been advanced in section 2, measurement errors make 
the measured values deviate from the corresponding values 
of the quality characteristic. The control limits, computed 
from statistics relating those measured values, result also 
affected. Then, the comparison of the deviated values with 
distorted control limits produces mistaken decisions and 
inadequate process adjustments. The intensity of the cause 
and effect relationships within this chain depends on the 
relevancy of measurement errors, when compared with the 
standard deviation of the process. No reference is made to 
the product tolerance. This is the reason why the uncertainty 
per tolerance ratio presents a poor correlation with the 
uncertainty of process mean. A similar behavior should be 
expected from other indices based on product tolerance, like 
R&R(%Tol) [4], Cg and Cgk [7].   

 
6.  CONCLUSION 

 
In this paper, a task-specific measuring capability 

criterion has been described. It can be applied to select or 
validate measurement systems that provide data to set the 
process aim, when the techniques known as “sequence of 
values” or “difference chart” are used. 

The criterion is based on the estimation of the 
“uncertainty of the process mean”, which characterizes the 
dispersion of the values that could reasonably be attributed 
to the process mean after the setting procedure. This 
dispersion includes the sampling variation, characteristic of 
the statistical technique, and the incremental uncertainty due 
to measurement. Unlike other criteria, it does not need 
empirical limit values to judge the measuring capability, 
because the uncertainty of the process mean is directly 
related to product and process quality. This way, highly 
specific information is brought to the engineer or technician, 
who would be able to judge considering the peculiarities of 
the process in hands.  

It has been also shown that the uncertainty per tolerance 
ratio can fail when used to assess the measuring capability 
of systems used to set the process aim. This problem, 
associated with the use of the tolerance instead of the 
process standard deviation as reference value, could be also 
common to other indices like Cg, Cgk and R&R(%Tol) (not 
studied in this paper).  

In the opinion of the authors, more efforts are necessary 
to relate the metrological characteristics of measurement 
systems with their effect on product quality and process 
economy. The result of these efforts should be a complete 
set of simple tools to decide the adequacy of measurement 
systems for specific shop-floor applications. This will make 
metrology more valuable for the production personnel, 
making it possible justifying the expenditures in better 
measurement systems where they are truly needed.  
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