
XVII IMEKO World Congress
Metrology in the 3rd Millennium

June 22 −27, 2003, Dubrovnik, Croatia

REMOTE TRACING OF IN-HOUSE EVENTS IN HOME AUTOMATION

Kay Werthschulte, Friedrich Schneider

Technische Universität München, Institute for Measurement Systems and Sensor Technology, Munich, Germany

Abstract - Measurement and control systems are essential
in industrial applications. They are used to control and
automate all kinds of processes during production. Their use
in private homes is not so obvious due to the fact that the
requirements are totally different. Although there are
systems to connect sensors and actuators inside buildings
using fieldbus technology they are only used for simple
tasks like switching light and controlling the heating
installation.
Through a gateway it is possible to build tele-services that
allow any kind of maintenance by the inhabitants or service
personal. The service personal will be able to run
diagnostics on parts of the system as far as allowed (heat
control, failure analysis on certain devices, surveillance,
etc.). The access has to be restricted to prevent unauthorized
persons to intrude the system.
This work will describe the gateway and the concepts used
to share well defined services that are provided to users
remotely and locally.

Keywords: Remote maintenance, services, home-
automation.

1. INTRODUCTION

This work is based on results taken from a research project
called “tele-Haus” sponsored by the German Federal
Ministry of Education and Research (BMBF). For that
purpose a building near to Munich was built which is
equipped with components based on the European
Installation Bus (EIB), ISDN and an Ethernet network. The
project’s aim is to built new components using concepts of
modular micro systems. Besides developing these
components another focus was to benefit from the network
infrastructure in form of extending the control by tele-
services.

2. SYSTEM ARCHITECTURE

In general there are several bus systems which can be used
for in-house communication. The focus of this work should
be set to home automation mainly. In this context there are
three kinds of applications for bus systems: multimedia,
(tele-)communication and HVAC (Heating, Ventilation, Air
Condition). There is at least one bus system which could be
taken into concern for usage: IEEE 1394 for multimedia,
Ethernet for communication and EIB for HVAC appliances
only to name a few. The demands and characteristics of

these bus systems are quite different. Multimedia
applications are demanding a guaranteed high data rate.
IEEE 1394 uses an isochronous transfer mode to deal with
voice and video streaming without repeating any
information in case of data loss. In contrast to that Ethernet
is a packet oriented communication media which does not
offer isochronous data transfer modes. In conjunction with
TCP-UDP/IP Ethernet is ideal for communication services.
The control of HVAC does not require an isochronous data
link. The main task is to provide a basis to transfer small
units of data in a secure way.
All bus systems can be categorised by bus speed, kind of
data links (e.g. isochronous, asynchronous, connection less,
connection oriented) and their meaning for certain
applications. Coupling these bus systems requires physical
and logical connections. The physical connections are built
by using gateways. The gateway concept includes future
extensions and support for not yet considered bus systems.

Fig. 1: Hierarchical physical system structure

The structure refers to similar approaches known from
automation systems. The lowest level includes all kinds of
sensors and actuators like devices from the HVAC system.
The next level is for bridging and collecting resources.
Embedded devices can control basic functions of the
underlying level. This level is optional and can be left out.
The top level – level 1 – accommodates the functions of the
subsystems and transfers them into a service oriented
context. The gross data rates of the bearer systems have to
be adapted to the underlying subsystems. In this case a
factor of 10 was chosen to allow several gateways being
connected while ensuring that the capacity of the bearing
system is sufficient. The needed gross data rates depend on
the kind and amount of data transferred to the next level. For
normal operation the full capacity of each level won’t be
reached.

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC10

Fig. 2: Simplified gateway model

Fig. 2 shows the simplified gateway model. Using this
model allows four kinds of communication paths: the bus
communication on the underlying level, the communication
using a simple wrapper method, a communication between
the data models and a service-service user communication.
This flexibility opens up a broad variety of bus systems
being incorporated in this system architecture. Each gateway
maps the underlying sub system to the service oriented
approach and includes a description of the service/service
interface and a representation of the service-device
mappings. Middleware will be used to implement the system
model. The middleware is the glue to map the functionality
of devices to services.
By defining services the scope is moved from an
implementational view to a functional view of the devices
connected to each subsystem. This allows connecting
devices of different subsystems. The first step was to
develop a basic service which is available for every device
in the system. This basic service defines an interface to get
information about the device’s service capabilities as well as
providing a graphical user interface.

Presentation

-dimension : Dimension
-presentationArea : PresentationArea

<<service>>

BasicService

-globalSrvUID : int
-name : String
-presentation : Presentation
-serviceDescription : ServiceDescription

+startPresentation(in presentationArea:PresentationArea)

+rcvMessage(in message:Message)
-sendMessage(in message:Message)
-registerService(in serviceDataBase:ServiceDataBase)

<<file>>

Description

-xmlDescription : XMLDescription

<<interface>>

IPresentation

+getGraphicalPresentation()
+getTextualPresentation()

Fig. 3: Main aspects of the basic service

The figure above shows the conceptional layout of this basic
service. There are elements for supplying a general
description and methods to access the graphical
representation of the extending service. The methods
rcvMessage and sendMessage are placeholder for the
service communication which is provided by the extending

service. The description of the service is shown here by
using an XML file. It is also possible to include a service
description in a different way. The point of the service
description is more abstract to make services and service
users interoperable. Only by having a service description
clients can use the services provided by a device. Moreover
clients can use services they never knew how to handle.
An example for a more specific service is shown in fig. 4.
This is already an implementation of the service. The
FileService inherits the characteristics of the basic service
and extends the functionality by adding further messages
like retrieveInformation and storeInformation. The task of
this service is to provide a mean for storing and retrieving
any piece of information.

<<interface>>

IFileService

<<interface>>

IInformationService

+retrieveInformation(key:String) : Information

+storeInformation(key:String, information:Information)
+deleteInformation(key:String)

+getContentListing() : char[]

<<interface>>

IBasicService

Information

+getByteArray() : byte[]
+getIntArray() : int[]

+getCharArray() : char[]

FileService

0..*

Fig. 4: Information service – general structure

3. IMPLEMENTATION

Fig. 5 gives an overview of the system as given by the
research platform.

Fig. 5: Network structure

Logically the server/gateway can take care of the
functionality of the EIB service gateway. Because of
security concerns this approach was not chosen. The
gateway is equipped with a firewall to restrict the access to
the exported services.
The server/gateway has two external connections serving
requests for remote control from external users: a permanent
internet connection and a dial-in connection. The gateway
collects all available services offered by the internal
subsystems.
The infrastructure of the tele-Haus allows integrating the
EIB in the system concept. To get access to the European

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC10

Installation Bus a component called TPUART is used. The
TPUART is an ASIC which implements layer 1 and parts of
layer 2 of the ISO/OSI protocol stack as defined by [1]. The
rest of the communication stack is implemented in software
of an embedded PC acting as a service gateway to the EIB.
This software handles the communication with the EIB and
serves all incoming telegrams and builds a process image of
the actual state of the EIB devices. All data is stored in so
called communication objects which bind system variable
contents to system ID’s. These variables can be shared all
over the system (e.g. hold the status of an actuator for
regulating the heating). The embedded PC keeps track of
these variables to make them accessible to high layered
applications. The main task of the EIB service gateway is to
export all services to a high data rate network in this case
TCP/IP (over Ethernet). On this level of abstraction all the
EIB communication is translated in well defined services.
This concept can be enhanced on all kind of bus systems.
For sharing these services a middleware called Jini is used.
Jini is a system from Sun Microsystems to dynamically
announce, find and use different services in a network. This
can be compared to Universal Plug and Play.
The Jini EIB services extend the demands of the basic
service as introduced in the previous section. Each service
provides a graphical user interface which can be used by
means of the methods included in the BasicService. For
demonstration purposes a simple client was developed. This
client has no knowledge about the devices and does not
require a static configuration. The client uses the lookup
service to find all EIB devices and displays them according
to additional rules dynamically.
Additional services to the ones of the EIB are video
surveillance and any kind of other services which can be
taken from various kinds of bus systems. There is a camera
which is connected by bluetooth and also includes it’s
service into the network.

<<interface>>

ICameraService

+getImage()
+getTime()
+trackImages(source:Source)

+trackMovements(source:Source)
<<interface>>

CameraServiceProxy

<<interface>>

Remote

ImageObject

-time : int

-Image : int

+getImage()
+getTime()

<<interface>>

Serializable

BluetoothCom

+getLiveImage()

+connect()
+registerImageListener(listener:ImageListener)

+registerMovementListener(listener:MovementListener)

<<interface>>

MovementListener

+movementDetected()

<<interface>>

ImageListener

+imageAvailable()

CameraController

+storeImageToDisc()
+retrieveImageFromDisk()

Thread

ImageEvent

-image : ImageObject

+getImage()

MovementEvent

EventHandler

+addImageListener()
+deliverImageEvent()
+addMovementListener()

+deliverMovementEvent()

RemoteEvent
0..*

-images

Fig. 6: Bluetooth implementation using a proxy

The service implementation is divided into parts for
communication with the bluetooth camera using the Basic
Imaging Profile as defined in [6]. The class BluetoothCom
cares about requesting images from the camera. The images
are stored in ImageObjects and can be retrieved by using a

service or by calling the display service inherited by the
basic service.
There are plans to integrate a Home Audio Video
interoperability (HAVi) network as well. It uses a high
performance serial bus (IEEE 1394) according [2] to
transport data.
The basic services are defined by software interfaces in
Java. Each device offering a service will announce it to the
network. Using a special mechanism for discovering these
services each node in the system can use another nodes
service. All services can be removed and added
dynamically, that means during runtime without disturbing
other services. An example for the procedure to find a
displayable EIB service is shown in fig. 7. The service is
first registered at a central server. It can be found by the
client using the lookup service. After getting the service for
a device, e.g. a light switch, the client just calls the show
service which causes the device to be displayed. The user
can now easily control the device. The client needs no
knowledge about the user interface. All needed information
is transferred by the server.

Fig. 7: Sequence diagram for finding and using a service

The service description is only needed of the client does not
have any information about the usage of that service.
Although the basic interface has to be well known inside the
system. In the previous example the client knows that there
is an interface providing methods for delivering a graphical
user interface. Assuming all clients can handle Jini the usage

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC10

of services can be discriminated by the prerequisites of the
client (service user):

- the client does not know anything about the service
There are constructs in Java to get information about
objects, including their implemented interfaces, parent
classes, fields and methods. All these information can
be gained by using reflection. With the aid of reflection
it is possible to built a client which does not know
anything about the service itself. Some constraints still
exist: The information about the object must be
loadable dynamically during runtime. Otherwise the
Java Virtual Machine is not able to reconstruct the
remote objects.
- the client knows the basic service
The client can immediately access a graphical user
interface to start up a service session in interaction with
the user. The description delivered by the method
getDescription inherited from the BasicService includes
all information about the functionality of the service.
The usage of some service may still require reflection to
accommodate unknown data (object) types.
- The client does know the service interface
The client is programmed to interact with a well known
service. In this case the service description is not
needed.

Using reflection always tends to crack up the OOP approach
of Java and to fall back to procedural program schemes.
Although this is the only way to make a universal service
usage possible.
All the statements made above refer strictly to Jini: it does
not define a basic set of interfaces which leads to vendor
specific service interface implementations.
To bundle all kinds of services another piece of software
exports the functionality into the Open Services Gateway
Initiative (OSGi, [3]) framework. The framework defines
application interfaces to install, remove, start and stop
services. In this case a bundle is installed to remotely access
the gateway using a java applet in an internet browser. The
applet can be started at the client side and allows access to
parts of the services running inside the building. The
internet browser simplifies the usage of remote control
software. The applet code can be downloaded from a web
server and all needed (client/server) software can be updated
using the OSGi framework. Another reason not to take a Jini
client lies within the nature of the lookup service. The
standard implementation of Jini allows two kinds of
mechanisms for finding a lookup server. The first one uses
UDP multicast telegrams to get information about the IP
address of the lookup server, the second is unicast, but
requires knowledge of the network address. UDP multicast
telegrams are not routed over the internet, therefore the
standard mechanism fails. The second, unicast mechanism
would be suitable, but does not fit into the Jini concept not
needing to know where the lookup server is located.
The communication with the gateway is secured by using
Secure Sockets Layer [4]/Transport Layer Security[5]. This
allows mutual authentication by certificates.

Fig. 8: Firewall configurations

There are two cases having to be reviewed when connecting
remotely to the OSGi gateway: in the first case an additional
firewall regulates all incoming and outgoing connections
from and to the client. In the worst case only a few TCP/IP
ports are left open for outgoing communication and all
incoming connection requests are blocked. The
implementation of the remote control software allows even
to pass this configuration by initializing an outgoing
connection to the server and using it also for data exchange
initiated by the server. Using a dial in server (fig. 8, bottom)
these restrictions do not apply.

The developed system concept includes several aspects for
connecting many bus systems and make them remotely
available. This allows parts of the available services, which
can be found inside the internal network, to be exported to
an external user. An example is a device proxy for a EIB
consumption meter to be exported to the OSGi gateway for
enabling remote readings from the energy supplier. Besides
using this technique for remote energy readings it can be
used to detect system failures remotely enabling facility
management companies cost effective analyzing tools not
only for private homes.

4. CONCLUSION

The concept described in this paper is using standard
technologies for communication between devices. The focus
is not only set on making devices communicating with each
other. This could be achieved by proprietary gateways as
well. Furthermore an abstract interface is defined which
enables devices from several bus systems exchanging object
data. This data can consist of a single command for
switching lights but also a video stream from an IEEE1394-
1995 network or a TCP/IP video stream. The protocols at
very low layers are hidden and not of importance anymore.
This unifies the access to services and allows the user to
take advantage of all installed bus systems and enhance their
possibilities by linking them together.
Although Jini is meant for distributed systems it is not suited
for being exported to the internet. The used UDP-telegrams
for announcements are not routed through the internet. This
is why OSGi was taken to export the services. The gateway
can be extended by adding further bundles for each bus
system installed in the building. This combination of in-
house integration and export of services makes the system
highly extensible without demanding for proprietary
software for the benefits acquired by coupling several
systems together.

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC10

REFERENCES

[1] EIBA, “The EIB Handbook 3.0”, Brussels, 1998.
[2] IEEE, ”IEEE1394-1995, IEEE Standard for a High

Performance Serial Bus”, 1996.
[3] OSGi, OSGi Service Platform, ISBN: 1 58603 252 6, 2002.
[4] Alan O. Freier, Philip Karlton, Paul C. Kocher, “The SSL

Protocol Version 3.0 Internet Draft”, Netscape, March 1996.
[5] C. Allen and T. Dierks, “RFC2246: The TLS Protocol Version

1.0”, January 1999.
[6] Arai, Tatsuo; YAMAMOTO, Ryohei; RANG, Maria; et al. : Basic

Imaging Profile Interoperability Specification – Version 0.95c.
2001.

[7] Halsall, Fred: Data Communications, Computer Networks and
Open Systems. 4. Ausgabe, Harlow : Addison-Wesley, 1996.

[8] Werthschulte, Kay: Integration von heterogenen Bussystemen
in die Heimautomatisierung unter Verwendung von Middle-
ware. Dissertation, Technische Universität München, 2003.

Author: Dipl.-Ing. Kay Werthschulte,
Prof. Dr.-Ing. Friedrich Schneider,
Technische Universität München
Institute for Measurement Systems and Sensor Technology
D-80290 Munich
Germany
Tel. +49 89 289 23350, Fax. +49 89 289 23348,
k.werthschulte@ei.tum.de.

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC10

	P52:
	Numb:
	Numbx:
	C: 1458

	P53:
	Numb:
	Numbx:
	C: 1459

	P54:
	Numb:
	Numbx:
	C: 1460

	P55:
	Numb:
	Numbx:
	C: 1461

	P56:
	Numb:
	Numbx:
	C: 1462

