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Abstract 

 
Flow parameters measurement is beneficial for understanding oil-water two-phase flow. Due to the 
changeable flow structures of oil-water two-phase flow, the prediction of superficial velocity of oil-water two-
phase flow in large diameter pipes is still a challenging problem. In this paper, a novel soft measurement 
technique based on Capsule Network (CapsNet) is developed to predict the superficial velocity. Firstly, a 
vertical upward oil-water two-phase flow experiment in a 125 mm ID pipe was conducted, and response 
signals at different flow conditions were obtained by a vertical multi-electrode array (VMEA) conductance 
sensor. Then, in order to increase the number of samples without losing information, a new data pre-
processing (1D-to-2D) technique is used. Finally, a novel multi-task learning network based on CapsNet is 
designed to predict the flow pattern and superficial velocity of each phase. To verify the advancedness of the 
method, we compared the proposed network with its variations and other competitive networks. The results 
suggest the proposed network achieves the best performance for prediction of flow pattern and superficial 
velocity. The proposed method presents great potential for handling high-dimensional, time-varying and 
nonlinear problems in multiphase flow. 

 
1. Introduction 

 

Oil-water two-phase flow occurs frequently in the 

petroleum industry [1]. Flow pattern identification is a 

fundamental issue in two-phase flow study. Also, 

accurate measurement of flowrate can bring great 

benefits for well testing, reservoir management, 

production monitoring. As for the solution of liquid 

holdup, Maxwell formula [2] assumes that non-contact 

spherical particles with uniform diameter are randomly 

distributed in the conductive continuous phase medium. 

However, the fluid flow process in large pipe diameter 

is extremely non-uniform distribution, which is different 

from that in small pipe diameter. The idea of obtaining 

the phase flowrate by traditional methods is not feasible. 

 

In the early days, the data-driven methods for flow 

pattern identification were mainly focused on the 

statistical analysis of the measured signals [3]. Unlike 

traditional methods, many researchers have regarded 

machine learning as a potential alternative method for 

flow pattern prediction [4-6]. Therefore, automatic flow 

pattern identification for two-phase flows based on 

machine learning has attracted great research interest. It 

provides potential solutions for nonlinear systems and 

generates its own rules for the learned examples. One of 

the first studies applying machine learning algorithms to 

two-phase flow pattern recognition was presented by 

Cai et al [7]. In recent years, deep learning theory has 

provided a new perspective for the feature 

representation of complex systems. In contrast to 

machine learning, deep learning is replacing feature 

engineering methods. In this method, features are no 

longer designed by hand, but are learned by back-

propagation of trained deep learning models.  

 

By reviewing the survey literature, it is easy to find that 

there is relatively little research on multi-task learning 

in flow pattern recognition and superficial velocities 

prediction [8-12]. For sensor signals, most researchers 

still perform manual feature extraction. In addition, 

there is no design and construction of an intelligent 

recognition depth network to automatically classify 

these flow patterns by processing multi-channel 

conductance signals. So, this paper proposes a novel 

model to solve the problem for non-stationary and non-

linear multi-sensor signals of oil-water flow. To the best 

of our knowledge, the proposed model (sequence-based 

CapsNet with multi-task learning) is the first attempt to 

utilize CapsNet for two tasks simultaneously: flow 

pattern recognition and superficial velocities prediction. 

 

2. Related works 

 
Recently, with human exploration in deep learning, DL 

methods with more powerful data processing 

capabilities have been proposed. In this section, related 

works including the convolution block, residual 

structure, split-attention block, inception block and 

capsule network are briefly described. 

 

As shown in Figure 1, the CNNs [13] applies the 

convolution operation to the incoming multivariate time 

series, simulating the response of individual neurons to 
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visual stimuli and passing the results to the next layer. 

The pooling layer aggregates the output of neuron group 

of the previous layer into an individual neuron of next 

layer using pooling operation.  
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Figure 1: Convolution and pooling operation. 

 

As shown in Figure 2, ResNet [14] adds linear shortcut 

connections for the convolutional layers, which may 

potentially enhance the accuracy. The residual structure 

rationally connects one layer to another by skipping 

some intermediate layers for specialized information 

flow across layers. 
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Figure 2: Residual structure. 

 

Attention mechanism [15] guides a model to focus on 

the most important information in the input, rather than 

processing the whole input at once. The composition of 

the ResNeSt is inspired by ResNeXt, SE-Net, and SK-

Net. As shown in Figure 3, by introducing split-

attention, features with different weights can be 

obtained between groups of feature maps. 
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Figure 3: Split-Attention block. 

To obtain further deeper feature maps, traditional 

convolutional neural networks prefer to obtain deeper 

architectures, which leads to too many parameters that 

are difficult to train and, more importantly, it increases 

the consumption of time and space. Inception block 

provides a different approach to extract deeper feature 

maps. The architecture of inception block [16] is shown 

in Figure 4. 
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Figure 4: Inception block. 

 

Capsule networks [17] include different hierarchy caps, 

which can be regarded as layers in traditional neural 

networks. Its architecture is shown in Figure 5. The 

capsule network encodes the spatial information and the 

probability of object existence at the same time, which 

is encoded in the capsule vector.  
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Figure 5: Capsule networks architecture. 

 

In the capsule net, high-level capsules are the weighted 

sum of the low-level capsules. Dynamic routing [17] is 

introduced to update the weights. By dynamic routing, 

the conversion from a low-level capsule to a high-level 

capsule is complete. The CapsNet uses the similarity of 

capsules in different layers to update the weights, that is, 

the dynamic routing algorithm, as shown in Figure 6. 
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Figure 6: Dynamic routing algorithm. 

 

3. Proposed method 

 

First, the input is pre-processed and then, is fed to the 

model for the task completion. The whole architecture is 

shown in Figure 7. 
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Figure 7: The complete proposed proposal for multi-task learning. 

 

3.1 Pre-processing of raw sensors data 

 

Considering that the input to the CapsNet is two-

dimensional, as shown in Figure 8, the raw sensor data 

also needs to be changed from one dimension to two 

dimension (1D-to-2D) in the pre-processing. Finally, 

normalization of the data is also required for better 

training of the network. 

 

 

Figure 8: Sensors signal 1D-to-2D conversion method. 

 

3.2 Model architecture  

 

The structure of the proposed model is shown in Figure 

9. CapsNet mainly includes multi-set attention layer, 

residual layer, inception layer, part-connected 

primaryCaps layer, digitCaps layer and outputCaps 

layer. 

 

First, the dimension is improved with convolution 

blocks (1*1 convolution kernel) on the two-dimensional 

input data, and the focused features are extracted using a 

multi-set attention block, and then the dimension is 

recovered with convolution blocks (1*1 convolutional 

kernel). Then, the new features and the original data 

(both of the same size) are stacked by the residual 

structure to obtain the augmented data. Immediately 

after, the augmented data is extracted with multi-scale 

features using an inception block. Finally, the 

constructed vector group neurons pass the multi-scale 

features to the digital capsule layer for multi-task 

through an improved dynamic routing. 

 

 

Figure 9: Architecture of proposed model. 

  

4.  Data acquisition experiment 

 
As shown in Figure 10, the conductance probe array 

consists of five stainless steel probes A, B, C, D and E, 

which are inserted into the pipe at a depth of 1/8D, 1/8D, 

1/4D, 1/4D and 1/2D (D is the pipe diameter), and the 

axial distance between the probes is 15 cm. The probe is 

powered by 5V DC power supply, when the needle 

electrode is in contact with non-conductive oil phase, 

the measurement circuit is off and high voltage is output; 

while when the needle electrode is in contact with the 

conductive water phase, the output is low voltage.  

 

The ring conductance measurement system is based on 

the Vertical Multi-Electrode Array (VMEA) 

conductance sensor developed in our laboratory [18]. 

The VMEA consists of a pair of excitation electrodes 
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E1-E2, one sensor (sensor C) for global measurements 

of the flow structure and two sensors (sensor A and 

sensor B) for local measurements. A sinusoidal 20 kHz 

excitation source with an effective voltage of 1.4 V is 

used for excitation. 

 

The oil-water two-phase flow dynamics experiments 

were conducted in a multiphase flow loop apparatus at 

Tianjin University, as shown in Figure 10. It mainly 

consists of three parts: oil-water two-channel supply 

system, flow loop pipeline and control system. In the 

experiment, the internal diameter (ID) of the pipeline is 

125 mm, the oil phase is No. 15 industrial white oil 

(density: 845 kg/m3, viscosity: 11.984 mPa∙s), and the 

water phase is tap water (density: 1000 kg/m3, viscosity: 

1 mPa∙s).  

 

 

Figure 10: Oil-water Flow Loop Facility. 

 
The experimental design was to first fix the water phase 

flow velocity with a peristaltic pump, and then 

gradually increase the oil phase flow velocity. When the 

oil and water phases are fully mixed in each flow 

condition, the oil-water phase flow patterns are 

observed by visual observation, and the output signal of 

the measurement system is recorded. The range of water 

flowrate Qw in this experiment is 0.21 m3/h - 7.5 m3/h 

and the range of oil flowrate Qo is 0.21 m3/h - 15.2 m3/h. 

 
Throughout the experiment, we also observed three 

typical flow patterns, as shown in Figure 10. For oil-in-

water flow (O/W), the dispersed phase is the oil phase, 

and most of the small oil bubbles are dispersed in the 

water flow and slowly rise with the fluid. For 

transitional flow (TF), a large number of oil bubbles 

gather into oil blocks, while a large number of water 

bubbles gather together to form water blocks, and the oil 

and water blocks rise and roll up and down with the 

fluid at the same time, which is an unstable flow state. 

For water-in-oil flow (W/O), many small water droplets 

are densely dispersed in the oil flow.  

As shown in Figure 11, during the experiment, a total of 

99 experimental results were obtained at different 

oil/water phase superficial velocity ratio settings. 
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Figure 11: Experimental flow map at different oil/water phase 

superficial velocities. 

 

Several highly differentiated flow patterns during oil-

water flow were indeed found to exist, and they can be 

more clearly identified by high-speed photography. 

However, the large differences observed in the flow 

pattern maps are not the focus of this research paper, 

which aims at the intelligent identification of the sensor 

output signals. On the other hand, the flowrate 

parameters are obtained by combining the known cross-

sectional area of pipe and the predicted superficial 

velocity of each phase.  

 

As shown in Figure 12, for the oil-in-water flow (O/W), 

the conductance fluctuation signal bounces up and down 

arbitrarily with randomness; for the transitional flow 

(TF), the conductance fluctuation signal bounces up and 

down with pseudo-periodic characteristics; for the 

water-in-oil flow (W/O), the conductance fluctuation 

signal is a random noise signal, limited by the properties 

of the VMEA measurement system. 
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Figure 12: The signals of VMEA for three typical flow patterns: (a) 

O/W flow: Qw = 0.21 m3/h, Qo= 0.21 m3/h; (b) O/W flow: Qw = 2.5 

m3/h, Qo = 5.8 m3/h; (c) TF: Qw = 0.83 m3/h, Qo = 9.17 m3/h. (e) W/O 
flow: Qw = 0.21 m3/h, Qo = 10 m3/h. 
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Figure 13: The output signal of VMEA under different flow 

conditions with constant water phase flowrate (Qw=1.67 m3/h). 

 

4. Software measurement implementation 

 

As shown in Figure 13, it can be seen from the signal 

analysis that for the O/W flow, the signal fluctuates 

between 2.0 V and 2.2 V. Since the fluctuating 

fundamental value of the conductance signal in the O/W 

flow varies too slightly, and thus the water holdup 

cannot be obtained through the Maxwell formula. 

 

In the experimental evaluation, various evaluation 

criteria are chosen to verify the effectiveness and 

correctness of the models. ACC is the ratio of the 

number of correctly predicted samples to the total 

number of samples. To visually evaluate the prediction 

results, here we introduce three commonly used 

regression analysis indexes, namely mean absolute error 

(MAE) and mean absolute percentage error (MAPE), 

symmetric mean absolute percentage error (SMAPE).  
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In this paper, a series of comparative experiments are 

completed on TensorFlow, Google's open deep learning 

platform. The architecture is based on TensorFlow to 

implement network training and testing, and is 

completed on a workstation with Intel(R) i7-6950X 

CPU and NVIDIA RTX 2080Ti GPU (11 GB graphic 

memory) and 32 GB memory.  

 

The sample is randomly divided into training set, 

validation set and test set at a ratio of 7:2:1. The raw 

signals after pre-processing were used for model 

training process. In the experiments, we fixed some 

parameters based on experience. Adam and 

backpropagation are taken to optimize. The initial 

learning rate is 0.01, and it decays by half every 5 

epochs. Moreover, the batch size is 32 and the number 

of epochs is 50. The dimension of the category capsule 

is set to 3. Run 5 times to average the results. Set all the 

above parameters to obtain satisfactory classification 

accuracy and keep it constant in oil-water flow dataset. 
 

5. Experimental study 

 

Figure 14 gives the performance of the proposed model 

on the test set with respect to the estimation of the 

superficial velocities of both phases. It can be noticed 

that the model also has a good estimation capability on 

the test set.  
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Figure 14: The prediction results of the combination (Uso, Usw) based 

on our trained model on test set. 

It should be emphasized that this part of the experiment 

is based on a complete churning of the data, where each 

flow condition data is distributed and present in the 

training set, validation set and test set. Slicing each type 

of data with different steps of sliding windows ensures a 

balanced and sufficient amount of data for each type. To 

objectively test the performance of the proposed model, 

it was compared with other models that have proven to 

be very effective in the field of parametric prediction. 

 
Table 1: Comparative tests on ACC and SMAPE of different models. 

Model SVM [19] DNNs [21] Cap [24] Proposed 

ACC 0.9212 0.9605 0.9915 0.9984 

Model SVR [20] LSTM [22] CNTM [23] Proposed 

SMAPE  9. 20% 6. 97% 4.64% 1.53% 

 

6. Conclusion 

 
These interesting and meaningful findings suggest that 

CapsNet can reveal nonlinear time series containing 

extreme details of the flow structure, and furthermore, 

the model proposed is highly capable of dealing with 

high-dimensional, time-varying and nonlinear problem, 

and has great potential for complex measurement 

systems. 
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