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Abstract 

 
To guarantee the accuracy of ultrasonic flow meter, an in-use measurement system for ultrasonic flowmeter 
incorporating digital signal processors and machine learning approaches was proposed. Experimental 
analysis has been carried out to determine the variables affecting the accuracy of ultrasonic flowmeter. Based 
on random forest algorithm, we evaluated the contribution of different variables on the accuracy performance 
of ultrasonic flowmeter, and establish a model including variables extraction and prediction of flow deviation 
for in-use measurement of ultrasonic flowmeter. By obtaining data of the flowmeter signal index, flow rate 
characteristics, sound velocity and flow velocity etc., the flow deviation of ultrasonic flow meter is predicted 
using random forest algorithm, and the difference between predicated value and observed value is smaller 
than 0.76%. Furthermore, the degree of influence of different variables on the accuracy of ultrasonic flowmeter 
was analysed. The uncertainty of the prediction result was evaluated, with an extended uncertainty U = 0.92% 
~ 0.22% (k=2).  
 

 
1. Introduction 
 
Ultrasonic flowmeters (USM), with advantages of 
high accuracy, no moving parts, and little or no 
pressure drop, are one of the fastest-growing 
technologies in natural gas flow measurement [1, 
2]. Accuracy in flow rate measurements became a 
mandatory requirement for the trading. However, 
lack of efficient in-use measurement method is a 
major issue for ultrasonic flowmeters. The 
processing tasks for real-time performance are 
mandatory for guaranteeing the accuracy in flow 
rate measurements of ultrasonic flowmeter. 
   
Machine learning, as a branch of artificial 
intelligence and computer science, focuses on the 
use of data and algorithms to imitate the way that 
humans learn and gradually improves its accuracy 
[3]. Few researchers have utilized the power of 
machine learning for flow measurements [4, 5]. We 
explored the potential of utilizing machine learning 
algorithms in metrology filed. We proposed an in-
use measurement system for ultrasonic flowmeter 
incorporating digital signal processors and 
machine learning approaches. Experimental 
analysis has been carried out to determine the 
index affecting the accuracy of ultrasonic flowmeter. 
Based on random forest algorithm, we evaluate the 
contribution of different variables on the 
performance of ultrasonic flowmeter, and establish 
a model including feature extraction and prediction 

of flow deviation to guarantee the accuracy of 
ultrasonic flowmeter.  
 
By obtaining data of the flowmeter signal index, 
flow rate characteristics, sound velocity and flow 
velocity etc., the flow deviation of ultrasonic flow 
meter is predicted using random forest algorithm. 
Based on the uncertainty of gas flow standard 
facilities and the performance of the algorithm, the 
article also elaborates the evaluation of uncertainty 
of the prediction result. The uncertainty of input 
features is analysed using the weight coefficients 
derived from the random forest model, and the 
performance of the algorithm are evaluated using 
time-series experimental data. Consequently, a 
comprehensive uncertainty assessment of in-use 
measurement of ultrasonic flowmeter is achieved. 
 
2. Basic principles 

 
2.1 Ultrasonic flowmeters 
For ultrasonic flowmeter using the transit time 
method [6], the measurement is performed by 
transmitting a pulse from a transducer through the 
fluid to another transducer positioned downstream 
in the pipe, and back again. The flow velocity is 
obtained by measuring the difference in the time 
taken for the signal to travel up and downstream. 
Therefore, the transit time in the upstream direction 
tu, and in the downstream direction td, can be 
expressed by Eqs. (1): 
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𝑡u =

𝐿

𝑐f−𝑣 cos 𝜃

𝑡d =
𝐿

𝑐f+𝑣 cos 𝜃

  (1) 

 
where 𝐿  is the path length, 𝑐f  is the velocity of 

ultrasound in the fluid, 𝑣 is axial velocity measured 

along the path, andθ is the angle between the 

sound path and the axial velocity of flow. 
 
From Eqs. (1), the velocity of ultrasound in the fluid 
and the axial velocity of flow can be calculated as 
follows 
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1
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An estimate  of the averaged flowrate of the paths 
𝑣̅  can be obtained, multiplied by the area A, the 
volume flowrate 𝑞V can be expressed as 
 
 𝑞V = 𝐴𝑣̅ (4) 
 
2.2 Random Forest algorithm (RF) 
As for Machine Learning, bagging or bootstrap 
aggregation is a technique for reducing the 
variance of an estimated prediction function. 
Bagging seems to work especially well for high-
variance, low-bias procedures. For regression, we 
simply fit the same regression tree many times to 
bootstrap sampled versions of the training data, 
and average the result [7, 8]. Random forest is a 
substantial modification of bagging that builds a 
large collection of de-correlated trees, and then 
averages them. Random forest is popular, and are 
implemented in a variety of packages. Some 
random forests reported in the literature have 
consistently lower generalization error than others 
[9]. 
 
An important feature of random forests is its use of 
out-of-bag (oob) samples. An oob error estimate is 
almost identical to that obtained by N-fold cross 
validation. Random forests can be fit in one 
sequence, with cross-validation being performed 
along the way. Furthermore, random forest “cannot 
overfit” the data, making it a feasible method to 
perform on different dataset of ultrasonic flowmeter. 
 
Random forests can use the oob samples to 
construct a variable importance measure, 
apparently to measure the prediction strength of 
each variable. Based on the importance measure, 
we evaluate the contribution of different variables, 
which indicates the impact of variables on the 
accuracy performance of ultrasonic flowmeter. 
 

3. In-use Measurement Model using RF  

 
3.1 Variables collection and extraction  
The information of USM is collected: the brand, 
nomination diameter, accuracy grade, flow range 
of the ultrasonic flowmeter, the instrument 
coefficient, the verification information, the on-site 
conditions, the installation conditions, and the 
basic information of the thermometer, manometer, 
component analyzer. The collected experimental 
data was processed by calculation and analysis, 
and three sets of variables are extracted as input 
variables of the flow prediction model for ultrasonic 
flowmeter, as shown in Table 1. 
 
Table 1: Variables of flow deviation prediction for USM in-use 
measurement  

Data type Variables References or Equations 

Signal index 

Signal-to-noise 
ratio (SNR)  

USM 

Signal  
amplification 
(AGC) 

USM  

Flow 
characteristics 

Velocity (VOG) USM 

Averaged 
Velocity 

USM 

Profile factor 
𝑣2 + 𝑣3

𝑣1 + 𝑣4

 

Symmetry 
𝑣1 + 𝑣2

𝑣3 + 𝑣4

 

Metrology  
characteristics 
 

Speed of sound 
(SOS) 

USM 

Averaged SOS USM  

Theoretical 
speed of sound 

𝐶 = [
𝐶p

𝐶v

𝑅u𝑇

𝑀
(𝑍 + 𝜌m (

𝜕𝑍

𝜕𝜌m

)
𝑇

)]

0.5

 

SOS deviation  𝐸 =
𝐶𝑓̅ − 𝐶

𝐶
× 100% 

Measurement 
Flow 

USM 

In Tab.1, USM refers reading values of flowmeter; Profile factor 
and Symmetry were calculated using 4-path USM as example; 
Theoretical speed of sound was obtained based on AGA report 
No.10. 

 
3.2 Prediction model for flowr deviation  
For 4 ultrasonic flow meters (one DN100, one 
DN150 and two DN200), input variables were 
extracted from experimental data. In addition, 
according to the latest real-flow calibration result of 
the ultrasonic flowmeter, the flow deviation was 
obtained, which served as the output value of the 
model. 
 
The training sample set and validation sample set 
of 4 flow meters were obtained separately, 
ensuring the independence and randomness of the 
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samples. The ratio of training sample and 
validation sample in the machine learning 
algorithm is generally set in the ratio of 2:1 to 4:1, 
so the number of data points of the training sample 
and verification sample of the 4 flow meters were 
shown in Table 2. 
 
Table 2: Sample of the prediction model 

No. USM  
Training 
sample number  

Validation 
sample number 

1 DN100 300 100 
 

2 DN150 124 50 
 

3 DN200-1 70 35 
 

4 DN200-2 240 80 
 

 
4. Result and evaluation 
  
4.1 Predicted flow deviation  
The training sample were used to train the model, 
and the total number of decision trees in the 
random forest algorithm is set to 500, and the 
number of features per node is set to 1/3 of the 
total number of input variables. Consequently, a 
prediction model of flow deviation and the 
importance measure of the variables were 
obtained. Using the established RF model, the 
predicted flow deviations using validation set were 
obtained. In addition, a comprehensive uncertainty 
assessment of in-use measurement of ultrasonic 
flowmeter is achieved. 
 
For all 265 experimental points of the ultrasonic 
flowmeters, the absolute value of deviation 
between predicted values and observed values are 
smaller than 0.88%. 
 

 

Figure 1: The deviation between predicted values and 
observed values for DN100 

 
4.2 Importance measure of variables  
A variable importance measure to indicate the 
prediction strength of each variable was 
constructed using oob samples. When the tree is 
grown, the oob samples are passed down the tree, 
and the prediction accuracy is recorded. Then the 

values for some certain a variable are randomly 
permuted in the oob samples, and the accuracy is 
again computed. The decrease in accuracy as a 
result of this permuting is averaged over all trees, 
and is used as a measure of the importance of that 
variable in the random forest.  
 
Table 3: The importance measure of variables for DN100 

Type Variables 
Importance  
Measure (Scores) 

 
 
Metrology  
characteristics 
 

Averaged VOG 6.72 

Measurement Flow  4.46 

SOS deviation  
0.81 

Theoretical speed of 
sound 

0.79 

 
 
 
Flow 
characteristics 
 
 

VOG of path 4 
0.74 

VOG of path 3 
0.69 

VOG of path 2 
0.65 

VOG of path 1 
0.64 

 
According to the Importance Measure, the top 8 
variables are obtained, as shown in Tab.3. (USM 
DN100). Among these variables, average VOG 
and measurement flow are the most important 
feature for the prediction of flow deviation in the 
performance of USM. Sound speed deviation and 
theoretical sound velocity also show high 
importance scores. In addition, the VOG of each 
path is also characteristic variables of importance. 
 
4.3 Result evaluation 
 
4.3.1 Prediction model performance 
The performance of the RF algorithm is evaluated 
using variance explained (Var explained). The Var 
explained represents the relationship between the 
predictors and the response variables and 
indicates the goodness of fit of the model, which 
can be understood as the determinant of the fit (R2) 
of the model [10,11]. In addition, predicted data 
and observed data residuals are the best 
quantitative indicators of the difference between 
the model and the real process, and they provide 
valuable information that can be used to assess 
the uncertainty of the model. The uncertainty of the 
output values of the prediction model is analyzed 
by using the residual distribution of the model and 
the relationship between the input variables and 
predictors [12~14]. Thus, the uncertainty ur,fit of the 
RF algorithm  can be expressed as the residuals of 
the model: 
 

   𝑢r,fit  = √
1

𝑛−1
 ∑ (𝑄dev,fit − 𝑄dev)2𝑛

𝑖=1    (5)  
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Where 𝑄dev,fit  is the predicted value of the flow 

deviation of the ultrasonic flowmeter, and the 𝑄dev 
is the observation of the flow deviation. The 
goodness of fit of the four ultrasonic flow meters 
and the uncertainty of the model are shown in 
Table 4. 
 
Table 4: Evaluation of the performance of RF model 

USM  Var Explained [%] 
Model Uncertainty 
(ur,fit) [%] 
 

DN100 61.54 0.46 

DN150 86.91 0.11 

DN200-1 91.38 0.27 

DN200-2 86.76 0.06 

 
4.3.2 Uncertainty analysis of variables 
 

• Theoretical speed of sound  
Theoretical sound speed values were calculated 
using data of temperature, pressure, components, 
etc., according to the calculation formula provided 
by AGA Report No.10 [15]. The uncertainty of the 
theoretical sound including the uncertainty of the 
calculation method, pressure measurement, 
temperature measurement and Components 
measurement. 
 
Table 5: Uncertainty of theoretical speed of sound 

Variables Source 
Standard 

Uncertainty [%] 
 

 𝑢r(𝑊) Calculation method 0.09 

 𝑢r(𝑝) Pressure 
measurement 

0.0577 

 𝑢r(𝑇) Temperature 
measurement 

0.005 

 𝑢r(𝑀) Components 
measurement 

0.013 

 
Combined standard uncertainty 𝑢𝑟(𝐶)= 0.108 % 

 
Combined expanded uncertainty 𝑈𝑟(𝐶)= 0.22 %(k=2) 

 

• Deviation of sound speed  
The deviation between each channel of the 
ultrasonic flowmeter does not exceed 0.035%, and 
it obeys uniform distribution within range. The 
sound speed deviation of the ultrasonic flowmeter 
is less than 0.06%. Considering the sound speed 
deviation uniformly distributed within the changing 
boundary. The uncertainty of deviation of sound 
speed is: 

 𝑢𝑟(𝑒) = √(
0.035%

√3
)2 + (

0.06%

√3
)2 = 0.0401% (6) 

 
• Averaged velocity  
According to equations (1) to (4), the common 
parameters for velocity and measured sound 
speed include: the length of the path and the 
transit time. The parameters of the involved in the 

volume flowrate calculation include the length of 
the path, angle between the sound path and the 
axial velocity of flow, and flow area, which are fixed 
parameters of the USM. The influencing factors of 
flowrate can be attributed to the sound wave 
transmission time. Therefore, the uncertainty of 
averaged velocity is mainly derived from the 
uncertainty of theoretical sound velocity and the 
uncertainty of sound speed deviation is: 
 

  √𝑢r(𝐶)2+𝑢r(𝑒)2 = √0.1082 + 0.04012 = 0.115% (7) 

 
• Flow measurement 
The uncertainty of the flow measurement of the 
ultrasonic flowmeter needs to consider the 
uncertainty of the flow measurement of the meter 
to be calibrated, the repeatability of the 
measurement, and the temperature, pressure, 
compression factor etc. Based on the Law of 
conservation of mass, the volume flowrate is: 
 

 𝑞
v,MUT

= 𝑞
f

∙
𝑝

𝑝MUT

∙
𝑇MUT

𝑇
∙

𝑍MUT

𝑍
  (8) 

 

Where 𝑞
v,MUT

 is the volume flowrate of meter being 

calibrated; 𝑞
f
 is the volume flowrate measured by 

the standard meter; p is the pressure at the 
standard meter; pMUT is the pressure at the meter 
to be calibrated; T is the temperature at the 
standard meter; TMUT is the temperature at the 
meter to be calibrated; Z is the compression factor 
of the gas flowing through the standard meter; 
ZMUT is the compression factor of the gas flowing 
through the meter to be calibrated. 
 
The uncertainty caused by temperature, pressure 
and compression factor is small and can be 
ignored in the calculation. Therefore, the 
uncertainty of the flow measurement can be 
calculated as follows 

𝑢𝑟(𝑞f) = √𝑢𝑟
2(𝑞v,MUT)+𝑢R

2(𝑞f) 

  = √0.08%2 + 0.08%2 = 0.1132%  (9) 
 
Based on the importance measure in Tab.3, the 
Weight coefficient is obtained using normalization 
of the values of importance measure. The standard 
uncertainty and weight coefficient of input variables 
are in Tab.6. 
 
Table 6: The standard uncertainty and weight coefficient for 4 
USM 

Variables 
Standard 
Uncertainty [%] 

Weight coefficient  

Averaged velocity  
 

0.115 0.236 ~ 0.090 

Flow 
measurement 
 

0.114 0.199 ~ 0.059 
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Theoretical speed 
of sound 

0.108 0.028 ~ 0.006 

Deviation of 
sound speed  
 

0.040 0.028 ~ 0.012 

The combined standard uncertainty of input 

variables is 𝑢r,input = 0.093% ~ 0.048%. 

  
4.3.3 Evaluation of the result 
The standard uncertainty 𝑢 of the prediction result 
includes the uncertainty caused by the 
measurement, that is, the uncertainty of the input 

variables 𝑢r,input, and the uncertainty of the model 

𝑢r,fit , which can be expressed as: 

 

 𝑢 = √𝑢r,input
2 + 𝑢r,fit

2
 (10) 

 
Table 7: The standard uncertainty of prediction result 

USM  

 
Standard 
uncertainty 
of input 
variables [%] 

Standard 
uncertainty 
of model [%] 

Standard 
uncertainty 
of result [%] 

DN100 0.048 0.46 0.46 

DN150 0.080 0.11 0.14 

DN200-1 0.071 0.27 0.28 

DN200-2 0.093 0.06 0.11 

 
The extended uncertainty of the in-use 
measurement of ultrasonic flowmeter based on 
random forest algorithm is U=0.92% ~ 0.22% (k=2). 
 
5. Conclusion 
 
To ensure the accuracy of ultrasonic flowmeter, an 
in-use measurement method for ultrasonic 
flowmeter was proposed by establishing an 
ultrasonic flowmeter flow deviation prediction and 
analysis model based on random forest algorithm. 
The main conclusions include: 
(1) Establishing an ultrasonic flowmeter in-use 
measurement procedure to diagnose the 
performance of the ultrasonic flowmeter in use by 
obtaining parameters such as signal quality, flow 
rate index, and measurement characteristics of the 
ultrasonic flowmeter. 
(2) Proposing a flow deviation prediction model of 
ultrasonic flowmeter based on random forest 
algorithm. The variables affecting the accuracy of 
ultrasonic flowmeter in use are analysed. 
Uncertainty evaluation of the prediction results and 
a comprehensive assessment of the in-use 
measurement method for the ultrasonic flowmeter 
were completed. 
 
The research results can provide a basis for the 
promotion and application of the in-use 

measurement method for ultrasonic flowmeter. In 
addition, the prediction model based on the 
random forest algorithm can not only ensure the 
accuracy of the ultrasonic flowmeter at work, but 
also provide support for the research of the online 
calibration method of the ultrasonic flowmeter. In 
future research, the in-use measurement 
procedure of ultrasonic flowmeter will be further 
improved. A machine learning model and related 
evaluation system with stronger adaptability will be 
established to ensure the accuracy of the of 
ultrasonic flowmeter in use. 
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