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Abstract 

 
Laser Doppler Velocimetry (LDV) is a single-point velocity measurement instrument. LDV can be precisely 
calibrated by the adjustable speed spinning-dics facility from NIM at speeds generally less than 40 m/s. However, 
due to its unique limitations, it is hard to calibrate LDV at a higher speed. To solve the problem of traceability of 
LDV high-speed measurement results and of the applicability of LDV low-speed calibration results under high-
speed conditions, it is analyzed that the uncertainty of velocity depends on both interference fringe spacing and 
Doppler frequency. As fringe spacing is independent of velocity, the possible difference of uncertainty in 
between the high and low velocity may be only related to the uncertainty of Doppler frequency at different 
velocities. Doppler frequency is a result of Doppler frequency algorithm, which includes mixed-radix FFT (Fast 
Fourier Transform) and the phase difference correction method in this paper. Because of the nonlinearity and 
complexity of the algorithm, the uncertainty of Doppler frequency is suitable for being evaluated by Monte Carlo 
Method (MCM) propagating probability distribution. The evaluation result shows that the relative uncertainty of 
Doppler frequency caused by the algorithm is less than 0.05% within the range of (0.1~340) m/s. The obvious 
difference of uncertainty has not been found in different velocities investigated. The budget resulting from 
Doppler frequency uncertainty change on the velocity result is less than 0.00075%. It is concluded that the 
calibration result at low velocity is also reasonable to be used in the case at the high velocity measurement 
within the speed of (0.1~340) m/s. 

 
1. Introduction 

 
Laser Doppler Velocimetry (LDV) is a single-point 

velocity measurement instrument which has high-

precision and non-contact properties. It is suitable for the 

measurement of flow velocities within (0.1~340) m/s and 

widely used in fields such as deep diving exploration, 

military production and satellite navigation [1-3]. 

Velocity measured by LDV is related to the interference 

fringe spacing in the measurement volume and Doppler 

frequency [4] and their measurement uncertainties are 

also related correspondingly. Fringe spacing can be 

calibrated by the adjustable-speed spinning-disc facility 

below 40 m/s [5]. And the value of fringe spacing 

depends only on the wavelength of the Laser and the 

angle between two coherent beams so the uncertainty of 

the fringe spacing keeps unchanged at different velocities 

theoretically [4]. Additionally, Doppler frequency is 

calculated by the Doppler frequency algorithm, and it can 

be inferred that the change of velocity uncertainty at 

different velocities may be caused by that of the Doppler 

frequency uncertainty. Therefore, study on the changes 

of the Doppler frequency uncertainty caused by the 

algorithm at different velocities is aimed at evaluation 

and expression of the measurement results of LDV at 

high speed so as to solve the traceability problem of the 

high velocity measurement of LDV. 

 

The uncertainty is often evaluated according to the Guide 

to the Expression of Uncertainty in Measurement (GUM) 

in the National Metrology Calibration Standard JJF 

1059.1-2012 [6]. But GUM has certain limitations of 

application. In this paper, the Doppler frequency 

algorithm is composed of mixed-radix FFT and phase 

difference correction method. The model of the algorithm 

is nonlinear; it is difficult to display the explicit functions 

of some inputs; the distribution of output values keeps 

unknown. So it is impossible to accurately judge the 

applicability of the uncertainty which is caused by the 

algorithm evaluated by GUM. Hence the method of 

Monte Carlo Method (MCM) propagating probability 

distribution is proposed to evaluate the uncertainty of 

Doppler frequency caused by the algorithm. It is suitable 

for the conditions: the model is nonlinear; it is hard to 

calculate partial derivative of model; PDF of output 

values deviates from the normal or t-distribution [7].  

 

2. Doppler frequency calculation model 
 

The relationship between the velocity v and Doppler 

frequency f
 

D is linear [8]. Doppler frequency is chosen as 

the output during calculation which is as follows: the 

LDV signal processing system picks up the scattered 

light signal and converts that photoelectric signal to an 

analogue continuous signal. The signal x(t) is cut off by 

a rectangular window function w
 

N(t) with length N and 
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then it is sampled into a finite discrete signal for data 

processing by the data processing system, as shown in the 

Equation (1). 

 ( ) ( ) ( ) ( )  raw
,  0,  1Nx t x t w t t N=  −  (1) 

After sampling the finite continuous signal x(raw)(t) with 

the sampling frequency fs, the discrete sampling signal 

x(n) is obtained in the Equation (2). 
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Where x(n) is a discrete signal of length N, which is used 

as the input to mixed-radix Fast Fourier Transform (FFT). 

And then the spectrum X(k) of signal is calculated to 

solve for Doppler frequency. Mixed-radix FFT is an 

iterative algorithm that performs Discrete Fourier 

Transform (DFT) by factoring length N of signal into 

mixed radix, as shown in Equation (3). 

 
1 2 L

N r r r=  (3) 

Where r
 

1, r
 

2, …, r
 

L are the different prime factors; L is 

the total number of the primes. And the formula of 

mixed-radix FFT is shown in Equation (4) [9, 10]. 
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Where W
para 

N , W
fac 

N  are coefficient rotation factor and DFT 

rotation factor [9, 10]. x(n) is substituted into Equation 

(4) to acquire the signal amplitude spectrum |X(k)|. 

According to the principle of Doppler frequency 

calculation and the relationship between frequency and 

its sequence number k, the number of the maximum 

value k
 

D of the amplitude spectrum can be obtained, 

which is used to calculate uncorrected Doppler 

frequency f
 

D
’ in the Equations (5) and (6).  

 ( ) ( )1

D maxk g X k−=  (5) 

 ' s
D D

f
f k

N
=  (6) 

When performing asynchronous sampling or non-integer 

period truncation, spectral leakage and picket fence effect 

will occur, so Doppler frequency will deviate from its 

true value to a certain extent. Consequently it is necessary 

to correct the frequency sequence numbers by using 

phase difference correction method in spectrum. The 

correction is as shown in Equation (7) [11]. 
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Where k is the frequency sequence numbers correction; 

f
 

D  is the corrected Doppler frequency (true value 

theoretically); g-1 is an inverse function. 

 

And the component R
 

1 caused by rounding appears at the 

positions involving addition and multiplication 

operations. Since k
 

D is an integer, there isn’t the rounding 

component. After Rewriting Equations (5), (6) and (7) 

with R
 

1 , the complete calculation model of Doppler 

frequency is shown in Equation (8), where the 

components R
(j) 

1 (j=1,2, …, 7) are the same type of 

components due to rounding, but may differ in value. 
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(8) 

 
3. Doppler frequency evaluation by the method of 

MCM propagating PDF 

 

The steps of uncertainty evaluation by the method of 

MCM propagating PDF are mainly divided into four 

steps: MCM inputs, MCM propagation, MCM output 

and result representation [7], as follows:  

 

Firstly, the inputs X
 

i, i = 1, 2, …, L, the output Y and the 

calculation model of them should be determined. Then 

PDFs are set for each input X
 

i respectively and MCM 

test sample size M is selected. M samples are chosen 

from their respective PDFs of X
 

i as the inputs, and M 

outputs Y are obtained through model calculation. Those 

M outputs are arranged in a strict increasing order to get 

the discrete PDF G of the output, from which the 

estimatey of Y, the standard deviation (y) and the 

inclusion interval [y
 

Lower, y
 

Upper] of Y under a given 

probability p can be expressed at last.  
 

3.1 MCM inputs of Doppler frequency algorithm 

According to the calculation model, the input sources of 

uncertainty caused by Doppler frequency algorithm are 

analyzed. The Doppler signal is composed of the 

Gaussian distributed base signal (low frequency) and the 

envelope of the Gaussian distributed cosine signal (high 

frequency) [4], as shown in Equation (9). 
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Where t is the time; =N
 

s/fD is the finite transit time of the 

particle passing through the measurement volume; fD is 

the true value of Doppler frequency; N
 

s represents the 

number of fringes in the measurement volume, which is 

related to the measuring volume diameter and the size of 

the fringe spacing; x
 

1, x
 

2 are the amplitude of the low and 

high frequency signal in Doppler signal respectively. 

 

After high-pass filtering, according to the characteristics 

of the signal amplitude, Doppler signal can be expressed 

as a continuous constant amplitude wave (x
 

2 is time- 

invariant) or continuous random amplitude wave. And 

the former wave is selected for the evaluation (the 

evaluation method of the latter is the same), as shown in 

Equation (10) [4]. 
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Then the continuous signal x(t) is cut off by a window 

function through Equation (1) and sampled through 

Equation (2) to become a discrete sequence x(n), as 

shown in Equation (11). 
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Where n=0, 1, …, N−1; 
 

0 is the initial phase of the 

signal. From Equation (8), it is obtained that x
 

2、N
 

s is 

unrelated to Doppler frequency. Thus they are set as the 

constant x
 

2=1、N
 

s=21. fD is also an unknown constant, 

so there is the only input 
 

0 in Equation (9); In the 

calculation process of mixed-radix FFT, the output is 

only related to input x(n), so there is the only input 
 

0, 

too; The sources of inputs in Equation (6) are the 

sampling frequency fs and the length N; The input in 

Equation (7) is the spectral correction k; Finally, there 

is the component R
 

1 introduced by rounding. And the 

calculation model is built and shown in Equation (12). 

 ( )D 0 s 1,  ,  ,  ,  f f f N k R=   (12) 

 
3.2 Evaluation analysis of uncertainty introduced by 

rounding 

In computer operations, real numbers are represented by 

rounding as the floating-point numbers [12]. And the 

uncertainty introduced by rounding will appear 

anywhere in the operations performed by the computer. 

Therefore, the degree and influence of the uncertainty 

introduced by rounding need be firstly analyzed in this 

section for the basis of analysis in subsequent chapters. 

 

The data is generally expressed as an approximation of 

the original data by the regulation of the rounding 

principle. The rounding number can only be an integer 

multiple of the rounding interval  and the maximum 

error introduced after rounding is /2, which is uniform 

distributed [12, 13]. According to the B-type evaluation 

method of standard uncertainty, the interval half-width a 

can be expressed as the maximum error /2 with 

confidence factor k= 3 , and the uncertainty introduced 

by rounding is shown in Equation (13). 

 ( ) 0.29
2 3

a
u x

k



= = =  (13) 

In the operation process, there is rounding in both 

multiplication and addition. The rounding uncertainty 

introduced by one round of multiplication is shown in 

Equation (14). 

 mul 0.29
2 3

a
u

k



= = =  (14) 

The rounding uncertainty introduced by one round of 

addition is shown in Equation (15). 

 add 0.29
2 3

a
u

k



= = =  (15) 

In the process of mixed-radix FFT, DFT is divided into 

L layers for iterative operation. And each layer is 

composed of the sum of product of the input sequence, 

the coefficient rotation factor and the DFT rotation 

factor. Therefore, the operation of each layer contains 

the multiplication of three complex numbers and then in 

turn add up. The multiplication containing 3 complex 

numbers requires 8 real number multiplication and 3 

real number addition operations. Similarly, there are 8 

imaginary number multiplication and 3 imaginary 

number addition operations. After complex 

multiplication, r
 

m−1 (r
 

m is the size of items in mth layer) 

complex addition are required, so the real part rounding 

uncertainty of the mth layer of output are shown in 

Equation (16). 

 
( )

( )

mul add
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m m
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e u r u
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=  + + − 

= + 
 (16) 

The imaginary part is shown in Equation (17). 
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The total amplitude rounding uncertainty of the mth 

layer is shown in Equation (18). 

 2 2

A, R, I, R, 2m m m me e e e= + =  (18) 
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In the mixed-radix FFT calculation process, the 

amplitude uncertainty generated by each layer will be 

transferred to the next layer in the form of addition. The 

total amplitude rounding uncertainty in the Lth layer is 

shown in Equation (19): 

 
A, R, 

1 1

2
L L

m m m

m m

e e e
= =

= =   (19) 

Assuming that the number of reserved digits is q. So the 

rounding interval is  =1×10-q and the half-width of 

the interval a =/2= 0.5×10-q. There are different 

points of signal analysis in Table 1. where N is 

the number of discrete signal points (same as 

windowing length), and sum() represents the 

summation function. 

 
Table 1: Relationship between different reserved digits and rounding 

uncertainty of different points 

(N, L, sum(r
 

m))(r
 

m) 

(m=1, 2, …, L) 

Rounding Uncertainty 

8 bits  16 bits  32 bits  64 bits  

 (30, 3, 10) 

 (2, 3, 5) 
1.64e-7 1.64e-15 1.64e-31 1.64e-63 

 (210, 4, 17) 

 (2, 3, 5, 7) 
2.34e-7 2.34e-15 2.34e-31 2.34e-63 

 (2310, 5, 28) 

 (2, 3, 5, 7, 11) 
3.20e-7 3.20e-15 3.20e-31 3.20e-63 

 (30030, 6, 41)  

(2, 3, 5, 7, 11, 13) 
4.14e-7 4.14e-15 4.14e-31 4.14e-63 

 (128, 7, 14) 

 (2, 2, 2, 2, 2, 2, 2) 
3.46e-7 3.46e-15 3.46e-31 3.46e-63 

 

From Table 1, it is obtained that the uncertainty 

introduced by rounding can be ignored in the condition 

that the number of reserved significant digits are 4 or 

less. In the MATLAB environment, the number of 

reserved digits can be 15 in general and in the process 

of Doppler frequency calculation the order of 

magnitudes of Doppler frequency is tens of millions or 

less, so the number of reserved digits are 7 or more. The 

number of reversed digits in this evaluation are all 4, so 

the influence of the uncertainty introduced by rounding 

can be ignored. 

 

3.3 Probability distribution of inputs 

Based on the characteristics of different inputs in 

Equation (12), PDFs are set for them.  

 

When the continuous signal is cut off by window 

function, the probability of the origin of the signal 

depends on its initial phase 
 

0 which is uniform 

distribution, 
 

0~R(−,). 

 

LDV can be applied in (0.1~340) m/s velocity 

measurement in practice and the corresponding range of 

Doppler frequency is around (10, 000~50, 000, 000) Hz. 

The sampling frequency fs which is set artificially need 

satisfy the sampling theorem and should not be too 

large. So the sampling frequency fs is chosen as uniform 

distribution, fs~R(2.56f
 

D, 3f
 

D). Similarly, for efficiency 

the length N should be set as large as possible but not 

too large. The length N is set as an integer between 128 

and 16384, N~R(128,16384). 

 

The rounding component R
 

1 has a same probability of 

appearing everywhere within the error limitation, which 

satisfies the uniform distribution [13, 14]. 

 

In the process of spectrum correction, spectral 

correction k is related to initial phase, sampling 

frequency fs and length N, which are all uniform 

distribution [11]. 

 

To sum up, each input can be set as uniform 

distribution, and its range is shown in Table 2. Where 

(a, b) is the range of each input. 

 
Table 2: The range of inputs 

Inputs Sources a b Note 

  

0 Initial Phase −   

fs 
Sampling 

Frequency 
2.56f 

D 3f 

D 
(0.1~340)  

m/s 

N Length 128 16384 Efficiency 

R 

1 Rounding −/2 /2 

 depends 

on reserved 

digits 

Δk 
phase difference 

correction method 
  

Related to 

other inputs 

 

3.4 MCM propagation, output and result representation 

of mixed-radix FFT  

Inclusion probability p is set to 95% and the test sample 

size M needs satisfy M  1(1−p)×104=200000 [7]. So 

the comparison between M=2×105 and M=106 is made at 

the same time for accuracy and efficiency. The process 

of propagation is as follows: the test sample size is set 

to M; The input vector (
 

0, fs, N, k, R
 

1) is randomly 

sampled M times and output (f
 

D1, f
 

D2, …, f
 

DM) is obtained; 

Then the output values are arranged into vectors in a 

strict increasing order from smallest to largest  

(f
 

D(1), f
 

D(2), …, f
 

D(M))( f
 

D(1) f
 

D(2) … f
 

D(M)), from which the 

discrete probability density function G is calculated. 

Finally, the estimatef
 

D, the standard deviation ( f
 

D) 

and inclusion interval [f
 

D−Lower, f
 

D−Upper] with probability 

p=95% are expressed from the vectors (f
 

D1, f
 

D2, …, f
 

DM) in 

G(f
 

D). The theoretical Doppler frequencies at different 

flow velocities are calculated respectively under the 

conditions that the laser wavelength is 514.5 nm, the 

angle between the laser beams is 0.0379 rad, the beam 

diameter is 2.2 mm, and the spacing between the two 

laser beams is 37.91 mm. Then the simulation signal 

x(n) as shown in Equation (11) is generated for 

evaluation in MATLAB. And the average of three 

evaluations of the estimatef
 

D, the standard deviation 

( f
 

D) and inclusion interval [f
 

D−Lower, f
 

D−Upper] with 

probability p=95% are taken as the final MCM 

evaluation results. The results of the evaluation and 

Doppler frequency under M =2×105 and M =106 are as 

shown in Table 3 and 4 respectively.
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Table 3: MCM results of Doppler frequency (M =2×105). 

Velocity (m/s) 
Theoretical Doppler 

frequency (Hz) 

M =2×105 

f
 

D/Hz (f
 

D)/Hz [f
 

D−Lower, f
 

D−Upper] /Hz (p = 95%) 

0.1 14724 14723.9991 5.9544 [14716.8633, 14730.9942] 

0.5 73626 73625.8290 29.5184 [73590.0051, 73660.8646] 

1 147252 147251.9764 59.4845 [147180.6818, 147321.7592] 

5 736267 736266.5152 296.9699 [735909.7353, 736617.5596] 

10 1472532 1472531.0076 593.9419 [1471817.2322, 1473232.8709] 

15 2208802 2208801.4068 894.0229 [2207732.4541, 2209851.8038] 

20 2945067 2945064.4867 1183.9721 [2943651.5049, 2946476.0923] 

50 7362669 7362662.0759 2942.9942 [7359123.7751, 7366183.3443] 

100 14725338 14725329.5135 5941.7293 [14718186.1030, 14732330.1185] 

200 29450676 29450658.9674 11883.3832 [29436372.0059, 29464654.5805] 

300 44176017 44175975.5577 17645.6656 [44154787.0402, 44197094.6815] 

340 50066153 50066061.8656 20078.5820 [50041546.3603, 50089604.5680] 

 
Table 4: MCM results of Doppler frequency (M =106). 

Velocity (m/s) 
Theoretical Doppler 

frequency (Hz) 

M =106 

f
 

D/Hz (f
 

D)/Hz [f
 

D−Lower, f
 

D−Upper] /Hz (p = 95%) 

0.1 14724 14723.9837 5.8974 [14716.8575, 14730.9654]  

0.5 73626 73625.9553 29.5407 [73590.4846, 73660.9661]  

1 147252 147251.8369 59.0319 [147180.4730, 147321.6641]  

5 736267 736266.2137 295.0303 [735909.4439, 736615.1437]  

10 1472532 1472530.4225 590.0636 [1471816.9244, 1473228.2730]  

15 2208802 2208799.5178 885.0677 [2207729.0882, 2209846.6842]  

20 2945067 2945064.3674 1182.2896 [2943638.9532, 2946467.5529]  

50 7362669 7362660.8335 2952.2199 [7359094.7329, 7366152.5426]  

100 14725338 14725323.1111 5913.8107 [14718190.9383, 14732342.8105]  

200 29450676 29450649.7897 11814.9338 [29436411.7298, 29464709.7279]  

300 44176017 44175977.6602 17722.4010 [44154620.7114, 44197067.7329]  

340 50066153 50066104.0691 20105.6080 [50041857.3353, 50089963.9321]  

 

4. Results analysis 

 

Based on the Table 3 and 4, it is analyzed that the 

evaluation results of MCM with M =2×105 and M =106 

are compared with inclusion probability p=95%.  The 

results are composed of the estimatef
 

D, the interval 

length | f
 

D−Upper− f
 

D−Lower| and their relative value 

respectively, as shown in Table 5 and 6. 

 
Table 5: The estimate relative value under different test sample size 

Velocity 

(m/s) 

The estimate f
 

D 

M =2×105 M =106 Relative value 

0.1 14723.9991 14723.9837 1.05×10-6 

0.5 73625.8290 73625.9553 1.72×10-6 

1 147251.9764 147251.8369 9.47×10-7 

5 736266.5152 736266.2137 4.10×10-7 

10 1472531.0076 1472530.4225 3.97×10-7 

15 2208801.4068 2208799.5178 8.55×10-7 

20 2945064.4867 2945064.3674 4.05×10-8 

50 7362662.0759 7362660.8335 1.69×10-7 

100 14725329.5135 14725323.1111 4.35×10-7 

200 29450658.9674 29450649.7897 3.12×10-7 

300 44175975.5577 44175977.6602 4.76×10-8 

340 50066061.8656 50066104.0691 8.43×10-7 

 
Table 6: Interval length relative value under different test sample size 

Velocity 

(m/s) 

Interval length | f
 

D−Upper− f
 

D−Lower| 

M =2×105 M =106 Relative value 

0.1 14.1309 14.1079 1.63×10-3 

0.5 70.8595 70.4815 5.36×10-3 

1 141.0774 141.1911 8.05×10-4 

5 707.8243 705.6998 3.01×10-3 

10 1415.6387 1411.3486 3.04×10-3 

15 2119.3497 2117.596 8.28×10-4 

20 2824.5874 2828.5997 1.42×10-3 

50 7059.5692 7057.8097 2.49×10-4 

100 14144.0155 14151.8722 5.55×10-4 

200 28282.5746 28297.9981 5.45×10-4 

300 42307.6413 42447.0215 3.28×10-3 

340 48058.2077 48106.5968 1.01×10-3 

 

Firstly, from Table 5 and 6 that the relative value of the 

estimate is below the order of magnitude of 10-5, and 

that of the corresponding interval length is below the 

order of magnitude of 10-2. So there is little difference in 

the evaluation results between under the sample size of 

M =2×105 and M =106. Secondly, there are certain rules 

in the PDF of the Doppler frequency under different 

velocities. It is acquired that under different velocities 

the PDF of Doppler frequency after the evaluation 

shows a trend that tends to be the same distribution that 

the peaks are prominent in the middle; the peaks are 

sharply decreasing on both sides; the edges are flat on 

both sides. And the probability density values of the 

peaks, the interval length display a gradual decrease and 

a gradual increase trend respectively with the increasing 

velocity, as shown in Figure 1. 

 

Figure 1: Doppler frequency PDF at different flow velocities 
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The corresponding uncertainty u(f
 

D) is calculated based 

on the standard deviation (f
 

D) from Table 5 and 6. It is 

observed that uncertainty u(f
 

D) is increasing linearly 

with the increase of velocity. And the uncertainty u(f
 

D) 

is divided by theoretical Doppler frequency to obtain the 

relative uncertainty of Doppler frequency u
 

r(f
 

D), as 

shown in Table 7. 

 
Table 7: Velocity and Doppler frequency relative uncertainty 

Velocity (m/s) u
 

r(f
 

D) (M =2×105)/% u
 

r(f
 

D) (M =106) /% 

0.1 0.0404 0.0401 (min) 

0.5 0.0401 0.0401 

1 0.0401 0.0401 

5 0.0403 0.0401 

10 0.0403 0.0401 

15 0.0405 (max) 0.0401 

20 0.0402 0.0401 

50 0.0400 0.0401 

100 0.0404 0.0402 (max) 

200 0.0404 0.0401 

300 0.0399 (min) 0.0401 

340 0.0401 0.0402 

 

And it can be seen from Table 7 that the relative 

uncertainty of the Doppler frequency caused by the 

algorithm at different velocities is less than 0.05%. The 

maximum relative deviation between maximum and 

minimum of the relative uncertainty of Doppler 

frequency is 1.5%. And the budget of the change of the 

Doppler frequency measurement uncertainty at different 

velocities on the velocity measurement results was less 

than 0.00075%, which verified the applicable accuracy 

range of the Doppler frequency algorithm. Therefore, 

the LDV calibration results at low velocity can be 

reasonably applied at high velocity measurement and 

the traceability problem of the high velocity 

measurement of LDV has been solved. 

 
5. Conclusion 
 

(1) The influence of the uncertainty introduced by 

rounding on the uncertainty evaluation and the data 

processing process can be ignored in the condition that 

the number of reversed digits are less than 4. 
(2) The effective results can be obtained under the test 

sample size is M=2×105 with inclusion probability 

p=95%. 

(3) As the flow velocity increases, the uncertainty of 

Doppler frequency increases, but the relative uncertainty 

of Doppler frequency remains unchanged. 

(4) The PDFs of Doppler frequency output values at 

different velocities tend to have the same distribution. 

And with the increase of velocity, the probability density 

values of the peaks, the interval length display a gradual 

decrease and a gradual increase trend respectively. 

(5) The relative uncertainty of the Doppler frequency 

introduced by the Doppler frequency algorithm is less 

than 0.05% within the velocity range of (0.1~340) m/s 

(6) The budget of the change of the Doppler frequency 

measurement uncertainty at different velocities on the 

LDV velocity measurement results was less than 

0.00075%, so the LDV low velocity calibration results 

can be applied to the measurement of high flow velocity, 

which solves the traceability of the LDV measurement 

results in the high velocity measurement.  
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