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Abstract – A mockup representing a historic masonry 

vault was tested on the shaking table and finally 

brought to collapse. During the seismic test, a video was 

taken and then processed by the motion magnification 

algorithm to magnify the smallest displacements. 

Subsequently, each frame of the video was translated 

into a graph to be analyzed by the graph’s centrality 

measures. Some of these parameter values significantly 

changed along the video before the collapse. Therefore, 

such parameters showed the potential to predict the 

collapse of the structure.    

 I. INTRODUCTION 

The instrumental monitoring of structures plays a 

fundamental role in detecting damage processes in ancient 

and modern buildings. However, conventional methods 

typically provide information about the current status of 

the structures. Engineers are able to infer the structural 

health (SH) and the state of integrity of the buildings based 

on simulations and analyses of numerical models, but this 

requires experience and in-depth knowledge of the 

structure. Moreover, most methods need continuous or 

periodic monitoring of the structure. Therefore, there is a 

strong boost towards automatic or semi-automatic SH 

systems. In this paper, we explore the potentiality of a new 

method to outline a collapse alert for historic masonry 

structures. The system is based on methodologies and 

concepts taken from the graph theory (GT), topology 

analysis (TA), motion magnification (MM). Motion 

magnification [1] acts as a microscope for tiny movements 

present in common digital videos. Its advantages in the 

study of ancient monuments are documented in [2, 3, 4, 5]. 

A graph is a mathematical object composed of nodes and 

links (or edges) connecting the nodes expressing some 

type of inter-relations, see the very good introductions of 

[6, 7]. The topology considers continuous deformations 

(homeomorphisms) of an object from a geometrical point 

of view [8, 9]. If a property of the object is invariant with 

respect to the deformations, it is called a topological 

invariant. Here we consider only some very basic results, 

since the mathematical treatment is very technical and 

beyond the scope of the paper. The proposed method was 

experimented by the shaking table test of a mockup of a 

historic masonry structure. The structure was eventually 

brought to collapse by seismic excitations reproducing a 

natural earthquake of weak intensity. During the seismic 

test a video was taken, then, the video was magnified by 

the phase-based MM algorithm [1] in order to amplify the 

deformations of the structure. At this point, each frame of 

the video was transformed into a graph, allowing the use 

of the tools of GT and TA. Some of these tools may provide 

invariants that should remain quite uniform along the 

video frames, unless a catastrophic event occurs. Of 

course, a collapse of the structure would be clear also to 

the naked eye, but some seconds before it could be not so 

evident. In fact, the structure undergoes deformations that 

may still be not destructive, although very dangerous. 

Anomalies in the structure may be sensed and even 

detected by accelerometers or more sophisticated devices 

[10]. Nevertheless, the overall picture remains difficult to 

interpret quickly and needs time consuming data 

processing and analyses. So we explored the possibility to 

set an early alert indicating that structural deformations 

became so large to significantly change the topological 

geometry of the structure. For example, let us consider a 

structure and suppose that thousands of vibration sensors 

(e.g. accelerometers, displacement sensors, etc.) are 

located regularly distributed on the structure. Using such 

data, a detailed finite element description (discrete crack 

model,) can be created to well represent the dynamic 

failure of the structure, as long as enough computing 

power is provided. However, at least in principle, 

immediately before the collapse the structure stiffness is 

lost and the model is not reliable anymore.  
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Thus, even in the most favorable conditions, near the 

collapse inferences about the building structural health are 

very difficult. We tried to face this issue taking advantage 

of Graph theory that facilitates the treatment of high 

dimensional problems reducing it to a lower 

dimensionality and providing topological measurements.   

 II. METHODS 

The Graph theory is an established branch of 

mathematics that offers a number of useful descriptive 

parameters [7, 8]. Usually, if the graph is derived from 

technological processes or natural phenomena is called a 

network. A graph G is a collection of relations among n 

objects called nodes or vertices, linked by edges, 

indicating that some sort of interaction exists between a 

pair of nodes. A symmetric matrix called adjacency matrix 

A represents the interactions: aij entries are 1 if an edge 

links node i to node j, 0 otherwise. A graph is connected if 

a path of edges exists from any node to any other node: 

here we consider only the connected component of G, 

discarding non-connected nodes from the analysis. The 

graph properties are described by several parameters such 

as Closeness, Betweenness, Degree and many others, 

usually involving heavy computations if the graph is large. 

We use some of them to quantify the structural health of 

the building. Actually there are others centrality measures 

that could produce good alert signals, but one has to assess 

also the calculation time, the specificity, false alarm rate, 

the cost-effectiveness, to choice the most suitable.  

MM acts like a microscope for micro-motions in digital 

videos unveiling visual patterns hardly visible to the naked 

eye, but saving the topology of the image sequence.  

The MM algorithm works on the pixel intensity value 

along all the video frames, forming a time-series. 

Measurements with conventional velocimeters and 

accelerometers are surely more precise and accurate, but 

are also expensive and much less practical [10]. Moreover, 

since each pixel produces a time-series, a huge number of 

contactless “virtual sensors” are made available. This is 

important, as it is well known that video processing takes 

a lot of time and resources, preventing a viable application 

to the real world. Of course, this is a crucial issue for every 

real-time alert system. Topology offers the basis of 

theoretical support to link the GT to the motion 

magnification. The point is to transfer the topology of the 

magnified frames into the topology of graphs. The MM 

algorithm is considered as a continuous deformation that 

keeps the topological properties of the objects, allowing 

the subsequent application of the graph theory. Until these 

topological properties hold, GT allows the calculation of 

the graph parameters.  

We will not analyze in details this aspect. We only note 

that the approach is different from the topological data 

analysis (TDA) described in [11] and also from Graph 

Signal Processing (GSP) [8], although there is a common 

ground. Moreover, to the best of our knowledge, the first 

clear proposal to use the GSP or the graph eigenvalues in 

the vibration analysis is in [12, 13]. However, [12] uses the 

GSP and MEMS sensors (but not the Fiedler eigenvalue) 

to study a steel beam, while [13] uses the Fiedler 

eigenvalue, but only for an industrial machinery. Our 

approach is radically different, since we use the pixels of a 

video as “virtual sensors” [3, 4, 5, 14] and the Fiedler 

eigenvalue to monitor a real masonry structure during a 

seismic test. Moreover, our procedure is much simpler and 

intuitive through the use of the motion magnification. 

Therefore, this could be the first time that the spectral 

graph parameters are applied to the analysis of a masonry 

structure.  

 A. Graph parameters 

As said before, graph properties are described by several 

parameters. All these techniques unfortunately involve 

heavy computations. A short list of the most common 

parameters is described below. 

 Closeness 

It is the inverse of centrality associated with a node. The 

sum of the shortest path lengths between a given node and 

all other nodes in the graph. Vertices that tend to have short 

geodesic distances to other vertices in the graph have 

higher closeness. 

 Betweenness 

This is the total number of shortest paths between every 

possible pair of nodes that pass through the given node. 

Vertices that occur on many shortest paths between other 

vertices have higher Betweenness.  

 Degree 

In this context the Degree is the number of edges from a 

node. Intuitively, a high degree is quite often associated to 

a fundamental role for the node. 

Now, remembering that the eigenvalues of a graph G are 

defined as: 

 

                                    Ax = λx                                        (1) 

 

where A is the nxn adjacency matrix of G, it is possible to 

calculate the so-called eigenvalue spectrum:  

 

                             0 = λ1 ≤ λ2 ≤ … ≤ λn                                         (2) 

 

A similar spectrum is calculated from the Laplacian matrix 

L, defined as L = D – A, where D is the node degree 

matrix. The eigenvalues of A or L are versatile tools, 

because they can represent the majority of a graph 

characteristics. In particular, the second eigenvalue of the 

Laplacian in ascending order λ2, is called algebraic 

connectivity or Fiedler eigenvalue. It is greater than zero if 
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the graph is connected: the larger the algebraic 

connectivity, the better the connectivity, the robustness 

and the resilience capability of a network [6, 7], and in our 

case, of the structure. Actually, we take the inverse of the 

algebraic connectivity, as we are interested in the level of 

the network deconstruction. Another important eigenvalue 

parameter is λn from the adjacency matrix A.  

Our approach is to build for every kth frame of the 

magnified video (before the collapse), a graph Gk and the 

matrices Ak and Lk, in order to calculate their spectra (2). 

In particular, we are interested in λn
k
 and λ2

k, for k = 1,… 

Nframe.  

The Fiedler eigenvalue, the maximum eigenvalue of A and 

the spectral parameters listed below may be considered as 

potential alert signals.  

 Dynamical Importance 

The Dynamical Importance is variation of the max 

eigenvalue after a node has been removed. Indicates how 

much the node is influential with respect to the others.  

 Estrada Index 

It represents the sum of closed walks of different lengths 

in the network starting and ending at a given vertex.  

 K-core 

Every subgraph has a vertex of Degree at most K. That 

is, some vertices in the subgraph touches K or fewer of the 

subgraph's edges. Nodes are ranked accordingly. 

 AV11 Index 

For a given graph G, the AV11 index identifies 

simultaneously the K most “important” nodes using the 

graph eigenvalues, as defined in [16]. 

 Other parameters 

There is also a group of parameters (e.g. Tenacity, 

Integrity, Scattering, Toughness etc.) specifically 

developed to quantify the robustness of a graph, defined as 

the capacity to preserve the connectivity after some nodes 

or edges are deleted. But their calculation is 

"nondeterministic polynomial-time complete" (NP-

complete), therefore they were not taken into consideration 

[17] in the present work. 

 B. Motion magnification 

Vibration monitoring of structures is a major issue for 

the damage detection. Today, a new digital image 

processing method, namely the motion magnification, 

allows to magnify small displacements in video motions. 

Motion magnification acts like a microscope for motion in 

video sequences, but affecting only some groups of pixels, 

unveiling motions hardly visible with the naked eye. MM 

uses the spatial resolution of the video-camera to extract 

physical properties from images to make inferences about 

the dynamical behavior of the object. Researchers are 

interested in assessing the method’s feasibility, since 

conventional devices are surely more precise, but 

expensive and much less practical. A number of 

experiments conducted on simple geometries like rods and 

other small objects as well as on bridges, have 

demonstrated the reliability of this methodology compared 

to contact accelerometers and laser vibrometers. We have 

extend the MM to the indoor analysis of historical 

mockups, and, generally speaking to the cultural heritage 

protection. Results show that MM analysis allows a visual 

identification of vibration mode shapes and of the most 

vulnerable elements of the structures. Though our 

equipment was of low quality in order to test the 

methodology in an adverse environment, results were very 

good. Evaluating the health of large structures in a short 

time span and possibly by simple devices that do not 

require expert operators, may be a pivotal issue in civil 

engineering. Thus, the availability of intuitive 

methodologies such as those based on a digital acquisition 

of images may result in a major breakthrough. The analysis 

of image sequences in the field of civil engineering is not 

new. For many years attempts to produce qualitative 

(visual) and even quantitative analysis using high quality 

videos of large structures have been conducted, but with 

poor results. This because of the resolution in terms of 

pixels, of the noise, of the camera frame rate, computer 

time and finally because of the lack of appropriate 

algorithms able to deal with the extremely small motions 

related to a building displacement. These and others 

limitations have restricted in the past the applications of 

digital vision methodologies to just a few cases. 

Nevertheless, recently important advances have been 

obtained by MIT [1]. Their algorithm, named motion 

magnification, seems able to act like a microscope for 

motion and, more importantly, in a reasonably short 

elaboration time. The latter point is crucial, as it is well 

known that image processing takes a lot of time and 

resources. Therefore, any viable approach must consider 

the reduction of the calculation time as an absolute 

priority. The basic MM version looks at intensity 

variations of each pixel, revealing small motions linearly 

related to intensity changes through a first order Taylor 

series, for small variations. The MIT code is freely 

distributed, however a few hardware commercial 

implementations of the MM are available, paving the way 

to the real-time analysis. If the video is long-lasting, the 

required computer time may be a major problem. Other 

physical limitations, such as the ones regarding 

illumination, shadows, camera unwanted vibrations, poor 

pixel resolution, low frame rate, presence of large motion, 

distance from the object, decrease severely the quality of 

the motion magnification and should be taken into account 

in order to achieve good quality results. In particular, the 

scene illumination should remain constant, as changing the 

background light could produce apparent motions. 
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 III. EXPERIMENTS 

A scale model of the cross vault of the mosque of Dey 

in Algiers [15], was tested at the ENEA Casaccia Research 

Center shaking table facility (Figure 1). The model 

underwent several shaking table tests and finally was 

brought to collapse [3]. In the video of the final destructive 

test, the structural collapse occurs at time of about 6 s. The 

video was acquired at a frame rate of 30.3 frames per 

second (fps) and at pixel resolution of 640 x 480. The 

overall number of frames available before collapse was 

182. During these few seconds, a number of control 

parameters are evaluated to find significant variations 

suitable to be used as an alert.  

There are two main problems: first, how to transform a 

frame into a graph, second, the structural deformation 

could be too small, producing too small variations in the 

parameters to be significant. The second point is solved by 

the MM that amplifies the tiny displacements in the video, 

without major topological modifications. The first issue is 

addressed realizing the graphs according to a simple 

“distance” rule: 

 

                       dij < threshold         k = 1… 182.             (3) 

 

where i and j are pixel of the k-th frame and dij is the 

difference of the intensity values of i and j [8, 12, 13]. If 

(3) is true, then an edge exists between node i and node j 

of the graph, see Figure 2. Albeit simple, the rule (3) 

preserves all the necessary topological conditions.  

Clearly, not all the pixels are relative to the structure, for 

example those on the image background. They could 

interfere with the construction of the graph, but since are 

“still”, their action on the graph may be discarded, if the 

lighting is properly arranged. Moreover, only the 

connected component of the graph is considered. Despite 

this, the rule (1) produces a certain amount of calculations, 

relevant for real-time applications.    

 

 

Note that the transformation problem frame-to-graph is 

transferred to the determination of a correct threshold. 

Unfortunately, its exact determination is still an open issue. 

Here we resort to the maximization of a sort of cost 

function of the graph parameters. Now we may calculate 

the graph parameters. As said before, we have examined 

the degree, the closeness and the eigenvalues spectra (but 

other choices are possible). The graph parameters are 

calculated for every of the 6.0 s * 30.3 fps, that is for each 

Lk, and Ak, giving rise to a time-series for any given 

parameter. We look for a significant [12, 13] variation in 

these time series, enough before the breakdown visibly 

takes place. The best results have been obtained by the 

inverse algebraic connectivity. 

 IV. RESULTS 

In this section, we examine the data obtained from the 

experiment on the shaking table. As said before, for each 

graph Gk, that is for every matrix Lk and Ak we calculate a 

value for degree, closeness and eigenvalues spectra. Thus 

we have some time-series for k = 1 … 182.  

 

 

 

Fig. 1. The masonry structure on the shaking table at 

the beginning of the test. 

 

Fig. 2. A graph obtained from magnified video. 

 

Fig. 3. Inverse of the algebraic connectivity. The arrow 

indicates a peak over a threshold (green dotted line). 

The dotted red line indicates the beginning of the 

collapse (152th frame). 
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Figure 3 shows that the inverse of the algebraic 

connectivity remains below a threshold of 0.024 until time 

t = 4.39 s, corresponding to the 133th frame in the 

magnified video, when it has a peak of 0.025. The above 

threshold can be used to alert that the network is quickly 

losing connectivity, meaning the structure is losing 

rigidity. The warning signal can be issued just a few tenths 

of a second before initiation of collapse, which occurs at t 

= 5.02 s. After time t = 5.40 s (163th frame), the 

deformations in the structure are so large that the 

topological properties do not hold anymore, as well as the 

algebraic connectivity. At t = 6.00 s (182th frame) the 

collapse is definitely activated, as shown in Figure 4. 

The threshold provides an early alert of only 0.6 s before 

the collapse. However, using a camera with higher frame-

rate/pixel resolution this time interval could be increased. 

Playing the magnified video in the slow-motion mode, 

these situations appear clearly. The other parameters show 

similar performances, but with several false alarms, 

therefore are not reported here. However, during the 

review phase of the paper, it was suggested to improve the 

prediction combining several parameters. Actually, this is 

possible, and, if the spectral calculation are too much 

cumbersome, this strategy could even become mandatory. 

 V. CONCLUSIONS 

In the present work the possibility to outline a new 

method based on graphs to define a collapse alert system 

by studying the magnified video of a shaking table test of 

a masonry structure was explored. The experimentation 

was carried out through seismic tests intended to reproduce 

the effects of earthquakes on an ancient masonry structure, 

until its final collapse. The innovative approach exploited 

the potential of graph topological invariants extracted from 

the video motion magnification of the structure under 

earthquake shaking. Each frame was transformed in a 

graph, then some standard graph parameters were 

calculated. The inverse of the algebraic connectivity was 

identified as a possible indicator to predict the collapse, 

intended as an abrupt change of the structure shape. In the 

experiments, it predicted the collapse 0.6 s in advance. On 

the basis of such encouraging results, the Fiedler 

eigenvalue should be considered for further studies with 

more data and experimental cases, to point out a proper 

alert signal for structural collapses. Although the 

anticipation time provided by the proposed alert method 

may be not sufficient to save lives, it could be used to 

activate protection systems.   
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