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Abstract – This paper analyzes the design of ancient 
catapults and compares the two known design formulas 
for Greek catapults, based on a standardized design for 
Hellenistic torsion-based catapults. It is hypothesized 
that, as both formulas, one for an arrow shooting 
catapult and one for a stone thrower, were considered 
to give the optimum design regarding performance, 
that both express the same optimal design. This could 
be used to determine the length/width of catapult 
arrows for optimally designed catapults, where no 
catapult arrow parts so far are known to have been 
discovered. In order to investigate this, a set of catapult 
point data, known from literature, were analyzed and 
a mathematical model developed.  

 I. INTRODUCTION 
The purpose of this article is to compare the known 

design formulas for ancient Greek catapults regarding 
energy storage and optimal design. The use of catapults 
can have both psychological (intimidation, deterrence) as 
well as physical effects like targeting soldiers (small 
catapults) or the destruction of walls (large catapults). The 
physical purpose of a catapult is to move a given mass m 
over a certain distance d by adding a high initial velocity v 
to said mass m during launch from the catapult. This 
projectile mass m can have different shapes and forms, 
from arrows over irregular formed objects like natural 
stones to processed spherical stone balls of specific mass. 
But all obey the laws of physics and must carry less kinetic 
energy Ekinetic than the stored energy in the torsion springs 
Elaunch see below. 

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =  1
2
𝑚𝑚𝑣𝑣2 <  𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ          (1) 

 
The main literature regarding the standardized design of 
torsion based catapults (where energy is mainly stored in 
torsion springs) specific about two sets of standardized 
design rules, being compiled primarily by Marsden [1,2] 
and covering arrows/spears/bolts and spherical stone balls, 
each with its own calibration formulae to be applied, see 
eq. 2 and eq. 3.  This is known from a section of Philon’s 
BELOPOEICA: “Now it is time to explain ….. the subject 
of artillery construction, called engine-construction by 
some people… the fundamental basis and unit of measure 

for the construction of engines was the diameter of the 
hole.  This had to be obtained not by chance or at random, 
but by a standard method which could produce the correct 
proportions at all sizes (of a catapult). …… Later 
engineers looked exclusively for a standard factor with 
subsequent experiments as a guide……” [1, p108-109].   
 
This standard factor is given by the diameter of the torsion 
spring. 

 

 
 
Figure 1 show a reconstructed arrow launching catapult, 

based on the Ampurias design with pre-tensioned rope 
springs inserted and is similar to the version build by 
Erwin Schramm in 2018. See [4] for details. 

 II. DESIGN METHODS 
The catapult is believed to have been invented around 

year 399 BC in Syracuse and the design of torsion based 
late Hellenistic torsion-based catapults is considered to 
have been standardized around 220 BC (see [1] for a 
detailed historical description and [3] for further 
discussion). The expression of the measurements of all 
major components in a torsion-based catapult are 
expressed as a factor relative to a single design parameter, 

 
Fig. 1. Torsion based euthytonon type catapult, based 

on the Ampurias design, seen from the rear. 
Construction by author k. Paasch. 
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the diameter of the torsion spring f. This diameter is, 
according to the ancient sources Philon/Heron/Vitruvius 
[1,2], determined by two different methods, depending on 
the purpose of the catapult. The key factor is the diameter 
of the washer, holding the inserted torsion spring. For an 
arrow launcher (Euthytonon) the factor fe is given by 1/9 
of the actual arrow length L (eq. 2). The remains of the 
remains a Greek catapult, the catapult from Ampurias, 
Spain, is shown in figure 2. The 4 circular washers for 
mounting the torsion springs are still visible. 

 
𝑓𝑓𝑒𝑒 = 1

9
𝐿𝐿                                   (2) 

 

 
 
For a stone throwing catapult (palintonon) is the washer 

diameter fp calculated as only a function of the weight w of 
the stone (eq. 3). [1,5]. The expression is shown in SI-unit 
(kg for the mass m and meter for the diameter fp). The 
original design formula used the unit of Attic mina.  

 
𝑓𝑓𝑝𝑝 = 0.130√𝑤𝑤3                                    (3) 

 
The torsion springs were installed under extreme stress to 
ensure sufficient energy storage and individually adjusted 
by turning the washers. For details see [1,3,5]. The actual 
amount of energy stored in a torsion spring / washer design 
as shown in figure 1 and 2 is traditionally calculated on the 
basis of a solid cylinder approximation. However, recent 
research has shown that the missing material below the 
crossbar should be taken into account [6,7,8]. 

 III. HYPHOTESIS 
The physical principle behind the function of the 

catapults is that both types of catapults accelerate a given 
mass m to a given launch velocity v with an initial energy 
given in eq. 1. In case both design formulas express a 
maximum performance is it to be considered if both 
equations express the same function of projectile weight 
m. In that case should it be possible to establish the actual 
length and shaft diameter L and d of catapult 

arrows/spears/bolts, where only the points have survived 
[9,10], as well as determining the size of arrows for 
catapult parts found without corresponding arrows/bolts.  

 IV. COMPARISON OF FORMULAS 
The “standardization” in design of catapults is as stated 

considered to have taken place around 220 BC. Both 
formulas relate to the weight of the projectile, the 
palintonon formula with direct use of the mass m of the 
stone and the euthytonon indirectly by the length L of the 
arrow. The mass of an arrow as function of its length 
however must be determined on the basis of the physical 
dimensions and material properties, such as specific 
gravity of iron and wood. This will be modelled. Under the 
initial hypothesis that both calibration formulas (eq. 2 and 
3) express the same physical performance, we have 
 

𝑓𝑓𝑒𝑒 = 𝑓𝑓𝑝𝑝                                      (4) 
giving 

1
9
𝐿𝐿 = 0.130√𝑚𝑚3                                 (5) 

 
Under the hypothesis that both calibration formulas are 
optimized regarding the resulting mass of the projectile 
(stone/arrow/spear), will both formulas for a given 
projectile mass m give the optimal torsion spring diameter 
f.  Combining the calibration formulas and solving for the 
mass m (in kg) gives 
 

𝑚𝑚 = 𝐿𝐿3

(0.130∙9)3
                              (6) 

 
The projectile mass m of an arrow is expressed as a 
function of the arrow length L and its other physical 
dimensions, shape and material compositions.  
 
The full length L can further be divided into the shaft 
length Lshaft and the point length Lpoint, as illustrated in 
figure 3. 
 

𝐿𝐿 = 𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                       (7) 
 
Lshaft can be expressed as the ratio α between the shaft 
length and the full length L, for α<1. 
 

𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛼𝛼𝛼𝛼                                (8) 
 
The mass m of an arrow can be calculated as the sum of 
the mass of the visible shaft (mshaft) and the mass of the 
point section (mpoint). 
 

𝑚𝑚 = 𝑚𝑚𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                      (9) 
 

The mass of the shaft part mshaft is calculated via its 
volume and the specific gravity of the wooden shaft 
material (δshaft) and the length Lshaft. The mass of the 
fletching is considered much lower than the other 

  

Fig. 2. Frame of the Ampurias catapult, Museo 
Archeologico, Barcelona, Spain. Left: Full frame. 
Right: Close-up on bronze washer for torsion spring 
mounting. Photos by author K. Paasch.  
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components and is not included. The real specific gravity 
of the point area will depend on the weight m as well of the 
shape of the actual arrowpoint, which might vary from 
type to type. As the arrowpoint can have a multitude of 
shapes a virtual specific gravity δvirtual is introduced into 
the model, expressing the specific gravity in case the arrow 
point section was an enclosing cylinder of a pseudo-
material with a virtual density δvirtual, resulting in the same 
mass m as the arrow point section as illustrated in figure 3. 
See section IV for details. The mass of the arrowpoint 
mpoint is thus calculated via the enclosing cylinder volume 
and the virtual specific gravity (δvirtual). In this simple 
model is the small cone of wood inside the socket not 
included as, for example, an inner diameter of 16 mm and 
length of 70 mm inside will add around 3 gram to the 
weight, only few percent of the weight of the iron point 
itself. 

 

  
The mass of the parts are approximated by 

𝑚𝑚𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋
𝑑𝑑2

4
𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎                 (10) 

 
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝜋𝜋

𝑑𝑑2

4
𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                (11) 

 
Inserting eq. 10 and 11 into eq. 9 gives 
 

𝑚𝑚 = 𝜋𝜋
4
𝑑𝑑2 ∙ (𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)        (12) 

 
resulting in  
 

𝑘𝑘1𝐿𝐿3 = 𝑘𝑘2𝑑𝑑2 ∙ (𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)    (13) 
 

where the constants k1 and k2 below contains the 
numerical values. 

𝑘𝑘1 =
1

(0.130 ∙ 9)3
 

 
𝑘𝑘2 =

𝜋𝜋
4

 
 
 

By applying the ratio α from eq. 7 as well as eq. 13 can it 
be shown that the diameter d of the arrow shaft be 
calculated by solving the following equation 
 

𝑑𝑑2 = 𝑘𝑘1
𝑘𝑘2
∙ 𝐿𝐿3

𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼𝛼𝛼+𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐿𝐿−𝛼𝛼𝛼𝛼)
               (14) 

 
Solving for the shaft diameter d 
 

𝑑𝑑 = �
4

𝜋𝜋∙(0.130∙9)3
∙ 𝐿𝐿

�𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼+𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(1−𝛼𝛼)
        (15) 

 
Rearranging for full arrow length L gives 
 

𝐿𝐿 = 𝑑𝑑 ∙ �𝜋𝜋∙(0.130∙9)3(𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼+𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(1−𝛼𝛼))

4
          (16) 

 
The parameters Lpoint and d are measured values from 

the given arrowpoint under investigation, as shown in 
figure 4.  

 
By introducing the variable β as the length of the bolt point 
Lpoint divided by the diameter d, the arrow length L can be 
determined. 

                  𝛽𝛽 = 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑

→ 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛽𝛽𝛽𝛽                     (17) 
 

Inserting eq. (17) into eq. (14) and rearranging terms gives 
 

𝑑𝑑2 =
𝑘𝑘1
𝑘𝑘2
∙

𝐿𝐿3

𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐿𝐿 − 𝐿𝐿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎)
 

 

𝑑𝑑2 =
𝑘𝑘1
𝑘𝑘2
∙

𝐿𝐿3

𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐿𝐿 − 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

 

 
Fig. 3. Arrow composition and measurements. 

 

Fig. 4. Measured length versus diameter of 13 catapult 
points from [9, plate 14]. 
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𝑑𝑑2 =
𝑘𝑘1
𝑘𝑘2
∙

𝐿𝐿3

𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

 

𝑑𝑑2 =
𝑘𝑘1
𝑘𝑘2
∙

𝐿𝐿3

𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽𝛽𝛽 + 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛽𝛽𝛽𝛽
 

 
             𝑑𝑑2 = 𝑘𝑘1

𝑘𝑘2
∙ 𝐿𝐿3

𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿+𝛽𝛽𝛽𝛽�𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎�
                  (18) 

 
It can be observed that the only unknown in eq. 18 is the 
arrow length L. Rearranging for powers of L: 
 

𝛽𝛽𝑑𝑑3�𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎� =
𝑘𝑘1
𝑘𝑘2
𝐿𝐿3 − 𝑑𝑑2𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿 

 
   𝑘𝑘1
𝑘𝑘2
𝐿𝐿3 − 𝑑𝑑2𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿 − 𝛽𝛽𝑑𝑑3�𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎� = 0         

 
𝐿𝐿3 − 𝑘𝑘2

𝑘𝑘1
𝑑𝑑2𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿 −

𝑘𝑘2
𝑘𝑘1
𝛽𝛽𝑑𝑑3�𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎� = 0      (19) 

 
 
Equation 19 shows that the length of the projectile can be 
calculated via 4 parameters:  

• The length of the arrow point Lpoint 
• The socket diameter d. 
• The virtual specific gravity of the point δpoint. 
• The specific gravity of the wooden shaft δshaft. 
 

The calculated corresponding β-values are illustrated 
in figure 5. The specific gravities must be estimated. 

 
The wood used for the shaft of roman spears throwing 

weapons such as pilum is expected to be a type of 
hardwood, typically ash, hazelnut or similar [11] and 
similar type of wood is due to lack of better knowledge 
here expected to be used for arrows. The specific gravity 
of these types of hardwood are typically around 670-740 

kg/m3 [12,13]. The value will also depend on the humidity 
content. The so far only known complete catapult arrows 
discovered (Dura-Euporos, Qasir Ibrim) [14] are from later 
Roman periods and thus not representative for this 
analysis. 

 V. VIRTUAL DENSITY OF THE ARROWPOINT 
The virtual specific gravity δpoint of the point will 

depend on the detailed shape and the wood inside the 
socked structure. A detailed analysis has in this paper been 
performed on data from a find of Roman Republican 
weapon hoard from Grad near Šmihel under Nanos Mt. in 
Slovenia [9], covering a large number of socketed catapult 
points of various sizes. The analysis determined the virtual 
specific gravity of the catapult points together with an 
estimation of their mass, for a structure illustrated in figure 
6. The virtual specific gravity of catapult points can easily 
be calculated, in case there is only little corrosion. 

 
A graphical representation of 13 calculated values, 

based on the drawings from [9, plate 14], is shown in fig. 
7.   

 

 

Fig. 5. Calculated point β-values as function of 
diameter size of the 13 catapult points from [9, plate 

14].  
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Fig. 6. Example of catapult points from the Grad near 
Šmihel find, Slovakia [9, plate 14]. Reproduced by 

kind permission from Arheološki vestnik. 

 

Fig. 7. Virtual specific gravity values for 13 analyzed 
catapult points data. Compiled from [9, plate 14]. 
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For corroded arrowpoints is it recommended that the 
measured/approximated geometries of the points. 
Drawings of geometries of the catapult points published in 
[8, plate 14] were used in this study. Swelling caused by 
corrosion can make the estimate difficult. The average 
value is 2330 kg/m3. The difference between the recorded 
weight of the catapult points and the estimated weight, 
based on the geometry and the specific gravity of iron 
(7800 kg/m3) is for 7 points within 10%. Those points are 
used as examples i section VII. 

 VI. SOLUTION TO EQUATION 
  A depressed cubic equation like eq. (19) can be written in 
the general form 

𝐿𝐿3 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞 = 0                          (20) 
where in this case 

𝑝𝑝 = −𝑘𝑘2
𝑘𝑘1
𝑑𝑑2𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎                            (21) 

 

𝑞𝑞 = −
𝑘𝑘2
𝑘𝑘1
𝛽𝛽𝑑𝑑3�𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎�  

 
= − 𝑘𝑘2

𝑘𝑘1
𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑2�𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛿𝛿𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎�              (22) 

 
 Cubic equations in general cannot easily be solved 
analytically. Except in cases, where one root is obvious 
and the equation is reduced to a quadratic equation, cubic 
equations are in practice mostly solved by an approximate 
or numerical method. The method used here is based on 
Cardano’s method and a set of assumptions related to its 
use. In case p and q are real numbers  
 

∆= 𝑞𝑞2

4
+ 𝑝𝑝3

27
> 0                                (23) 

 
then the real root (in this case L) is given by  
 

𝐿𝐿 = √𝑢𝑢1 3 + √𝑢𝑢2 3                            (24) 
 
where 

𝑢𝑢1 = −𝑞𝑞
2

+ √∆                             (25) 
 

𝑢𝑢2 = −𝑞𝑞
2
− √∆                             (26) 

 
For details see [15]. Eq. 21-26 are easily implemented in 
software such as Matlab, Excell spreadsheet etc.. Figure 8 
shown the calculated proposed arrow length L as function 
of the point length L, for selected values of the socket/shaft 
diameter (15-26 mm) for a selected specific gravity of the 
wooden shaft (700 kg/m3) and selected virtual specific 
gravity (2400 kg/m3) of for the point section (based on 
iron).  

 
A sensitivity analysis has been performed around the 
selected parameter set of d = 20 mm, 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 180 mm and 
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2400 kg/m3. The results are shown in table 1.  

Table 1 Sensitivity analysis. 

Parameter Point of analysis L variation 
d  20 mm 3.2 cm / mm 
𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  180 mm 0.6 cm / cm 
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2400 kg/m3 0.7 cm / 100kg/m3 

 
The sensitivity analysis shows that especially the 
estimation of the socked diameter d is important, as even 
mm variations can lead the deviations in the cm-range for 
the estimation of the full arrow length L. 

 VII. EXAMPLES 
As stated in section V, out of the 13 data sets used from 

[9, plate 14], 7 of them show a difference below 10% 
between the calculated and the measured weight. See table 
2. These 7 samples are used to calculate the expected 
corresponding full-length L of the arrow, based on eq. 21-
26. 

Table 2 Calculated full arrow length. 
Figure in 
[9, plate 

14] 

Length 
[mm] 

Socked 
[mm] 

Weight 
[gram] 

Point sp. gravity 
[kg/m3] 

L 
[cm] 

No. 1 152 17.2 93 2670 65.6 
No. 2 150 20.8 92 1870 71.7 
No. 6 138 17.3 84 2650 64.8 
No. 7 127 19.8 98 2580 71.4 
No. 10 138 20.5 112 2510 74.1 
No. 12 108 20.5 62 1770 67.8 
No. 15 108 18.7 63 1370 60.1 
 
The examples in table 2 shows that for the arrow points 

 

Fig. 8. Estimated full arrow length L as function of the 
point length Lpoint for socket diameters 15-26 mm and a 

point virtual density of 2400 kg/m3)   
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used in the analysis, full arrow lengths in the range of 60-
74 cm are to be expected. But although there are 2 different 
design formulas, for euthytonons and palintonons 
respectively, does it seem quite straightforward that arrow 
launchers may have been used also for launching small 
stones (likely in the same weight range of the correct stone 
size), just as palintonons were used for throwing 
arrows/spears [3], depending on the actual situation. 

 VIII. CONCLUSION 
This paper investigated the possibility of combining the 

two known basic formulas for the diameter of the torsion 
springs for euthytonon and palintonon catapults. The 
hypothesis is based on the authors assumption that both 
formulas represent the same basic principle, to accelerate 
a given mass to an optimized velocity. The combination of 
both formulas and the introduction of a virtual specific 
gravity 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for the point section of the arrowhas led to a 
polynomium of 3rd degree, solvable with a real root under 
certain assumptions. As an example, the published 
geometrical forms of 7 socketed catapult points have been 
analyzed and used as input data.   

It has been shown that the combination of the apparently 
different calibration formulas for standardized torsion-
based catapults could possibly be used to approximate the 
length of an arrow for an early Hellenistic euthytonon 
arrow shooting catapult, designed according to the 
standardized design method developed around 220 BC.  

To the authors knowledge no full-length catapult arrows 
from the Hellenistic period have been found or identified 
as such. Therefore, it has not been possible to test the 
developed theory against archaeological finds. 
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