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Abstract – Ancient pottery in archaeological sites is 

typically found as broken fragments. The collection, 

classification, and assembling of those pieces into their 

original artifact may take years of hard work, 

especially when the fragments are irregular, intermixed 

with parts of different vessels, or if some key pieces are 

missing. This problem is traditionally handled via two 

main steps: (1) the Classification of Archaeological 

Fragments into similar groups (CAF) and (2) the 

Reconstruction of each group into the original 

Archaeological Objects (RAO). Over the years, many 

alternatives have been proposed to solve this problem. 

A seminal approach was exploiting the color and 

texture properties of the fragments. More recently, the 

use of 3D computer-aided reconstruction methods 

gained attention as promising tools in pattern 

recognition. For this reason, researchers have 

implemented algorithms to collect all the information 

necessary to reconstruct a complete vessel from 

suitable data collected via 3D scanners. In this work, 

four types of algorithms were tested to reconstruct the 

objects without an a priori knowledge of the final 

shapes. The method exploited the geometric features 

obtained from the 3D mesh model acquisition on 

artificial samples from a broken mug, used as test 

cases. The best algorithm satisfying the final 3D 

reconstruction was then applied to the study of 

archaeological ceramic fragments from Villa della 

Piscina in the Parco Archeologico of Centocelle (Rome, 

Italy) within the project ERCOLE. The aim of this 

work is at developing a tool that satisfies the criteria of 

accuracy, performance, robustness, transportability, 

cost, and careful handling of archaeological specimens. 

 I. INTRODUCTION 

The archaeological study of ceramics is a mainstay for 

understanding both the daily life of ancient communities 

and their social features such as religious practices and 

commercial exchanges [1]. During archaeological 

excavations, it is extremely rare to find intact ceramics 

such as pots, jars, and bowls. The artifacts are usually 

found fragmented and are therefore called "sherds". Their 

position and orientation in the ground can provide 

information about the societies from which they came [2]. 

The ceramic sherd reconstruction technique usually used 

by archaeologists consists of relieving and graphically 

representing the fragments. The drawing of ceramic 

fragments plays a fundamental role in the hypothetical 

reconstruction of the shape of whole objects to which such 

fragments originally belonged. Traditionally, only 

fragments that contain an original rim or base edge, 

referred to as “diagnostics”, are considered to be useful to 

the archaeologist [3]. 

Pottery classification is based on several parameters 

such as the dimensions, shape, and materials used to 

manufacture the pot. Archaeologists use their experience 

and expertise to weigh these parameters and classify 

pottery [4]. The methodology presented in this work 

complements the knowledge of the archaeologists and 

allows obtaining a more accurate profile-based 

classification of pottery. 

3D systems able to automatically reconstruct objects 

from their fragments may find application in different 

fields. In archaeology, they could provide powerful 

support to reconstruct broken bones or shattered pottery 

[5]. 3D scan systems are already saving time for 

archaeologists, who can spend countless hours piecing 

together broken artifacts by hand. Moreover, they could 

provide archaeologists with tools to quickly make accurate 

measurements on fragments and reconstructed objects, 

allowing for improved interpretation of the observations 

[6]–[8]. In fact, in most cases, broken vessels and artifacts 

are not reassembled unless the fragments are visually 

similar and discovered in a context that constrained in both 

time and space. Using large databases of digitized 
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fragments, automatic reconstruction systems could 

identify issues such as partial or incomplete 

reconstructions of artifacts that may have been recovered 

during different years of the same excavation, or even from 

different sites altogether [7]. In this way, reconstruction 

systems could not only save working time, or help build 

useful databases of fragments, but could also allow the 

reconstruction of relevant artifacts that would otherwise 

remain as an incoherent pile of unrelated fragments. 

There are many techniques to obtain a 3D model of an 

object, such as photogrammetry, structured light scanner 

(SLS), and laser scanning [9], [10]. Structured light-based 

3D acquisition systems allow digitalizing not just one 

point at a time, but several hundred thousand points. The 

process of reconstructing the shape of an object is called 

triangulation. When a patterned light is projected onto the 

surface of the object, the patterns are distorted. High-

resolution cameras capture the data, which are processed 

by the 3D scanning software [11]. This method often 

provides useful information about the shape and the 

texture of the sherd, however, artifacts from the scanning 

process are possible, hindering satisfying reconstruction of 

the specimen. The following step consists of a jigsaw 

puzzle reconstruction of the fragments to obtain the 

original shape of the object. Many methods were 

investigated and developed for correctly rebuilding broken 

objects starting from matchings between adjacent 

fragments by using color surface [12], by using the 

morphology profile [8], similar geometry, and photometry 

along, or across matching fragments adjoining regions [13] 

The main goal of the present research is to achieve a 

plausible and optimal reassembly of vascular artifact 

fragments using structured light scanning. Two 

methodological options, described by Sellán et al. [14] and 

Je Hyeong Hong et al. [15], were selected and compared. 

The approach of Sellán et al. starts by generating a 

synthetic dataset consisting of over one million 

fragmented objects derived from ten thousand original 

models. This dataset serves as a foundation for optimizing 

the task of 3D geometric shape reassembly. By employing 

a recently developed physically based algorithm, the 

dataset simulates the natural process of how geometric 

objects fracture into various pieces. This algorithm 

efficiently produces diverse fracture patterns for any given 

object. 

For the reassembly task, three state-of-the-art deep 

learning methods were utilized: Global [16], [17], LSTM 

[18], and Dynamic Graph Analysis (DGL) [19]. Each 

method underwent training and testing using fractured 

objects from the synthetic dataset, with a maximum of 20 

pieces per object. The metrics used were the root mean 

square error (RMSE) and the mean absolute error (MAE) 

between the predicted rotation and the actual rotation R, 

respectively. Additionally, shape chamfer distance (CD) 

and part accuracy (PA) metrics were used for performance 

evaluation. 

The evaluation results and benchmarks demonstrated 

that graph neural networks (GNNs), such as DGL, 

exhibited superior reasoning abilities in determining the 

compatibility between fragments compared to the other 

two architectures (Global and LSTM). Specifically, DGL 

outperformed both Global and LSTM across all metrics, 

and its predictions of assembly results displayed a higher 

visual similarity to the ground truths compared to the other 

baseline methods.  

In our work, one of the objectives will be to benchmark 

and assess the effectiveness of these approaches in 

reconstructing the selected artifacts for the ERCOLE 

Project. However, this evaluation assumes that the 

collection of sherds provided to the algorithm belongs to a 

single artifact. It is important to note that this assumption 

may not hold strong in real-world scenarios where 

fragments within the same excavation site may lack 

distinct characteristics, making it difficult to attribute them 

to a single artifact. 

To address this limitation, we considered the method of 

Je Hyeong Hong et al., who proposed a procedure for the 

Incremental 3D reassembly of axially symmetric pots from 

unordered and mixed fragment collections: structure-

from-sherds (SFS). Based on this approach, we reanalyzed 

the same set of three-dimensional scans, introducing the 

flexibility that the fragments may not belong to a known 

number of artifacts a priori. In this way, we obtain both a 

potential reconstruction and an assignment of the 

fragments to the individual artifact. 

By incorporating this degree of freedom, we enhanced 

the robustness of our reconstruction process also 

accounting for situations where fragments cannot be easily 

attributed to a single artifact within an excavation site. 

In this work, we tested these different approaches for the 

pottery fragments from the Villa della Piscina 

archeological site to obtain not only a database of 

digitalized fragments but also the possibility to draw a 3D 

jigsaw reconstruction of the original vessel pottery. 

 II. DATA ACQUISITION 

The EinScan SE-V2 3D Scanner developed by Shining 

3D, China, was employed. The 3D scanner is composed of 

a projector and two web-cams with a resolution of 1.3 

Mpixels, equipped with a white LED source with a 

working distance of 290 ~ 480 mm, and a spinning sample 

holder with a scan speed of < 45 s. The resolution for any 

single image is 0.1 mm according to the manufacturer. The 

acquisition setup consists of the EinScan Scanner 

connected to a PC and the object to be recorded located on 

the rotating plate. A maximum 700×700×700 mm and a 

minimum 30×30×30 mm scan volumes can be analyzed. A 

series of parallel light patterns are projected on the target 

object; these are modified by the morphology of the object 

and by processing the modified patterns the software is 

able to reconstruct the surface of the sample. The EinScan 

is a portable device that requires a host computer. The 
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rotating table is used to index the scanned part and capture 

all sides in one automated process. Due to its weight (2.5 

kg) and size (570×210×210 mm), it can be used as a 

handheld device, but the software requires a graphic 

memory ＞1G and a RAM memory of ＞8G. 

 

Figure 1: process diagram of 3D acquisition and jigsaw 

puzzle reconstruction of pottery shields. 

 III. RESULTS 

The first step was to develop a useful tool to obtain a 3D 

jigsaw puzzle reconstruction of pottery fragments. The 

process involves (1) Acquisition of the 3D model and 

application of the post-processing procedure to reduce 

noise. (2) Identify and align the part that will match a pair 

of fragments by using various algorithms (Figure 1). 

As a preliminary test, a commercial ceramic pot was 

decorated and broken into 5 pieces (Figure 2a-b). Each 

piece was scanned multiple times by using the EinScan 

SE-V2 instrument (Figure 2c) obtaining a cloud of points 

of the piece (Figure 2d). 3D reconstructions were obtained 

(Figure 3a) by meshing 3 scans set of 20-36 acquisitions 

through the triangulation process. The obtained 3D models 

had an excellent resolution, especially at the boundary of 

the fragment, and were processed via several algorithms in 

order to find the best method able to recognize fragments 

that originating from the same pottery and reassemble 

them through a jigsaw puzzle reconstruction. In Figure 4 

we show as an example a 3D mesh model of a fragment 

from the Villa della Piscina archeological site where the 

techniques employed to digitalize the sherd gave very 

promising results.  

 

Figure 2: 3D scanner acquisition. (a) solid pottery, (b) 

pottery pieces, (c) 3D scanner EinScan for data 

acquisition, and (d) an example of the cloud of points 

resulting from the structured light acquisition. 

 

Figure 3: 3D reconstruction of the fragments (a) 

resulting 3D mesh, and (b) digital reconstruction of the 

fragments. 
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Figure 4: 3D reconstruction of a sherd generated by the 

EinScan scanner. (a) cloud point, (b) 3D mesh model, (c) 

measurements on fragments (d) textured 3D model. 

 IV. CONCLUSION 

In this work, we collected a series of 3D images of 

pottery sherds by using a commercial instrument based on 

the structured light scanner. The 3D mesh model showed 

good resolution, in particular at the fragment boundaries, 

suitable for successive matching of the pieces into their 

original artifact shape. Different algorithms for their 

recombination, based on graph neural networks, have been 

tested. The final results are promising and suggest a real 

possibility to use these methods as a tool in archeology for 

solving the long-lasting problem of reconstructing ceramic 

objects from their fragments. 

 V. ACKNOWLEDGEMENTS 

The authors acknowledge financial support through the 

ERCOLE project (Le villE del paRCO di centocelLE) 

funded by Regione Lazio and Ministero dell'Istruzione e 

del Merito (MIUR) via research grants G12666, on BURL 

n. 99 21.\10.2021, of LAZIO INNOVA. 

REFERENCES 

[1] V. Hristov and G. Agre, “A Software System for 

Classification of Archaeological Artefacts 

Represented by 2D Plans,” Cybernetics and 

Information Technologies, vol. 13, no. 2, pp. 82–

96, Jun. 2013, doi: 10.2478/cait-2013-0017. 

[2] G. Shear, “3D Scanning for Profile Acquisition 

and Reconstruction of Mayan Ceramics.” 

[Online]. Available: www.blender.org 

[3] Martina Andreoli, “Laboratorio di Archeologia - 

esercitazioni di disegno archeologico,” Università 

di Bolzano, 2004. 

[4] S. Goel and P. Singh, “Computer Vision Aided 

Pottery Classification and Reconstruction,” 2005. 

[5] M. Kampel, R. Sablatnig, H. Mara, and M. Lettner, 

“3D Acquisition of Archaeological Ceramics and 

Web-Based 3D Data Storage,” in Digital 

Discovery. Exploring New Frontiers in Human 

Heritage. CAA2006. Computer Applications and 

Quantitative Methods in Archaeology. 

Proceedings of the 34th Conference. 

Archaeolingua, Budapest, 2006, pp. 549–553. 

[6] H. Mara and R. Sablatnig, “A Comparison of 

Manual, Semiautomatic and Automatic Profile 

Generation for Archaeological Fragments * † ‡.” 

[7] A. R. Willis and D. B. Cooper, “Computational 

reconstruction of ancient artifacts: From ruins to 

relics,” IEEE Signal Process Mag, vol. 25, no. 4, 

pp. 65–83, 2008, doi: 10.1109/MSP.2008.923101. 

[8] A. Karasik and U. Smilansky, “Computerized 

morphological classification of ceramics,” J 

Archaeol Sci, vol. 38, no. 10, pp. 2644–2657, Oct. 

2011, doi: 10.1016/j.jas.2011.05.023. 

[9] D. Akca, “3D modeling of cultural heritage objects 

with a structured light system,” Mediterranean 

Arhaeology and Archaeometry, vol. 12, no. 1, pp. 

139–152, 2012. 

[10] H. Rahaman and E. Champion, “To 3D or Not 3D: 

Choosing a Photogrammetry Workflow for 

Cultural Heritage Groups,” Heritage, vol. 2, no. 3, 

pp. 1835–1851, Jul. 2019, doi: 

10.3390/heritage2030112. 

[11] R. Wang, A. C. Law, D. Garcia, S. Yang, and Z. 

Kong, “Development of structured light 3D-

scanner with high spatial resolution and its 

applications for additive manufacturing quality 

assurance,” The International Journal of 

Advanced Manufacturing Technology, vol. 117, 

no. 3–4, pp. 845–862, Nov. 2021, doi: 

10.1007/s00170-021-07780-2. 

[12] C. Toler-Franklin, B. Brown, T. Weyrich, T. 

Funkhouser, and S. Rusinkiewicz, “Multi-feature 

matching of fresco fragments,” ACM Trans 

Graph, vol. 29, no. 6, pp. 1–12, Dec. 2010, doi: 

10.1145/1882261.1866207. 

[13] G. Oxholm and K. Nishino, “A flexible approach 

to reassembling thin artifacts of unknown 

geometry,” J Cult Herit, vol. 14, no. 1, pp. 51–61, 

Jan. 2013, doi: 10.1016/j.culher.2012.02.017. 

[14] S. Sellán, Y. C. Chen, Z. Wu, A. Garg, and A. 

Jacobson, “Breaking Bad: A Dataset for 

Geometric Fracture and Reassembly,” Thirty-sixth 

199



 

 

Conference on Neural Information Processing 

Systems Datasets and Benchmarks , 2022. 

[15] Je Hyeong Hong, Seong Jong Yoo, Muhammad 

Arshad Zeeshan, Young Min Kim, and Jinwook 

Kim, “Structure-From-Sherds: Incremental 3D 

Reassembly of Axially Symmetric Pots From 

Unordered and Mixed Fragment Collections,” in 

Proceedings of the IEEE/CVF International 

Conference on Computer Vision (ICCV), 2021, pp. 

5443–5451. 

[16] J. Li, C. Niu, and K. Xu, “Learning Part 

Generation and Assembly for Structure-Aware 

Shape Synthesis,” Proceedings of the AAAI 

Conference on Artificial Intelligence, vol. 34, no. 

07, pp. 11362–11369, Apr. 2020, doi: 

10.1609/aaai.v34i07.6798. 

[17] Nadav Schor, Oren Katzir, Hao Zhang, and Daniel 

Cohen-Or, “CompoNet: Learning to Generate the 

Unseen by Part Synthesis and Composition,” in 

Proceedings of the IEEE/CVF International 

Conference on Computer Vision (ICCV), 2019, pp. 

8759–8768. 

[18] J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. 

Jiang, “CD-MPM: continuum damage material 

point methods for dynamic fracture animation,” 

ACM Trans Graph, vol. 38, no. 4, pp. 1–15, Aug. 

2019, doi: 10.1145/3306346.3322949. 

[19] G. , Zhan et al., “Generative 3D part assembly via 

dynamic graph learning,” Adv Neural Inf Process 

Syst, vol. 33, pp. 6315–6326, 2020. 

  

 

 

200


