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Abstract – In this study, we introduce a novel system, 

developed in Python, for classifying cognitive processes 

based on EEG signals. The system employs a 

Convolutional Neural Network (CNN) trained on a 

dataset comprising 4-minute EEG recordings from 30 

subjects. Each EEG sample processed for CNN input is 

0.5 seconds long and is transformed into EEG power 

levels for each channel. The primary achievement of 

this research is the successful use of the CNN to classify 

whether a subject is performing a cognitive task well or 

poorly. The system's performance has been validated 

by experts in cognitive neuroscience and psychology, 

and its results have been benchmarked against state-of-

the-art studies in the field. This work represents a 

significant 

contribution to the field of EEG-based cognitive 

process classification, demonstrating the effective 

integration of machine learning techniques and 

neuroscience data. 

 I. INTRODUCTION 

Electroencephalography (EEG) is a non-invasive 

technique for measuring the electrical activity of the brain, 

widely used in research, medical diagnostics, and therapy . 

EEG signals are used for the detection and analysis of 

patterns of electrical brain activity, which are typically 

divided into four basic frequency ranges: delta (0.5-4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and 

gamma (30-45 Hz) [1]. Each frequency range is associated 

with different cognitive states and functions. For example, 

alpha rhythm is often linked to relaxation and closed eyes, 

while beta rhythm is associated with active thinking and 

task focus. 

Quantitative electroencephalography (QEEG) is a 

technique that uses mathematical analyses to process and 

analyze EEG signals [2]. QEEG can be used to identify 

anomalies in brain electrical activity, including changes in 

signal amplitude and phase, localization of signal 

generators, and functional connections between different 

brain regions [3]. QEEG can be useful in the diagnosis and 

monitoring of various neurological disorders, such as 

epilepsy, schizophrenia, dementia, and autism [2]. EEG is 

used in the study of cognitive processes, such as attention, 

memory, emotions, speech, and problem-solving skills [4]. 

Moreover, EEG is widely used in sleep research and 

studies investigating the impact of sleep on cognitive 

functions [5]. 

By using EEG as a measurement method, it is possible 

to record brain activity in real-time, allowing researchers 

to study the dynamic processes occurring in the brain 

during different cognitive and emotional states. This can 

contribute to a better understanding of how the brain 

functions and the development of new therapies and 

interventions for neurological and psychiatric disorders 

[6]. 

In the realm of neuroscience, artificial intelligence (AI) 

has become a potent tool that offers fresh approaches to 

deciphering the intricate data produced by research on the 

human brain. AI presents exciting possibilities for 

improving the interface between humans and technology, 

neurological condition detection and treatment, and brain 

research. It also brings along fresh difficulties, like the 

requirement for sizable, high-quality datasets and the 

understanding of intricate model results. AI, particularly 

machine learning and deep learning algorithms, can 

process and analyze neuroimaging data (like MRI or fMRI 

scans) more efficiently and accurately than traditional 

methods. They can detect patterns and anomalies that 

might be missed by the human eye, aiding in the diagnosis 

and monitoring of neurological disorders like Alzheimer's, 

Parkinson's, and multiple sclerosis. AI plays a crucial role 

in the development of BCIs, devices that translate neuronal 

information into commands capable of controlling 

software or hardware. Machine learning algorithms can be 

used to decode the user's intent from the patterns of their 

brain activity. AI can help model the structure and function 

of biological neural networks. These models can provide 

insights into how neurons interact and communicate, 

aiding our understanding of brain function and behavior. 

AI can expedite the process of drug discovery for 
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neurological disorders by predicting the effectiveness of 

potential compounds and identifying potential side effects.  

AI can also be used to create predictive models for 

neurological outcomes based on a variety of data, 

including genetic information, environmental factors, and 

lifestyle habits. This can help in early detection and 

prevention of neurological disorders [7] 

Bashivan et al. propose a different approach, using Deep 

Recurrent-Convolutional Neural Networks (R-CNNs) for 

learning representations from multi-channel EEG time-

series. They transform EEG activities into a sequence of 

topology-preserving multi-spectral images, and then train 

a deep R-CNN to learn robust representations from the 

sequence of images. The goal was to find features that are 

less sensitive to variations and distortions within each 

dimension. In summary, both papers propose novel deep 

learning approaches for EEG data analysis, but they differ 

in their methods and applications [8]. Schirrmeister et al. 

focus on ConvNets and their visualization for EEG 

decoding, while Bashivan et al. use R-CNNs to learn 

robust representations from EEG data. Both methods show 

promising results, demonstrating the potential of deep 

learning techniques in EEG analysis and brain-computer 

interfaces [9]. Paper by Roy et al. provides a 

comprehensive review of the application of deep learning 

in EEG analysis. Instead of focusing on a specific model, 

the authors analyze a broad range of studies, highlighting 

trends, challenges, and recommendations for future 

research in the field. They emphasized the importance of 

model inspection, especially in clinical settings, and the 

need for transparency and reproducibility in DL-EEG 

studies [10]. 

This paper presents the development and validation of a 

system for the analysis and processing of 

electroencephalographic (EEG) signals with the aim of 

classifying the cognitive states of subjects. The aim of this 

research is to develop a benchmark for effective utilization 

of AI in the realm of neuroscience to enable and expedite 

future research endeavors. 

 II. METHODOLOGY 

The methodology for the development and validation of 

a system for analysis and processing of EEG signal for 

classification of cognitive state of subjects is very complex 

and requires a series of interconnected steps where the 

success of each phase of development is dependent upon 

the performance of the previous module. The detailed 

flowchart of methodology is depicted in Fig. 1.  

 

 
  

Fig. 1. Model loss over 50 epochs during training 

 

 A. Data Import 

The initial step in our methodology is the importation 

of the necessary data for our study. This data consists of 

electroencephalogram (EEG) signals, which are 

electrical activities generated by the brain and recorded 

from the scalp. These signals are stored in European 

Data Format (EDF) files, a common format for storing 

biomedical signals. 

The EEG data are loaded into the Python environment 

using the mne library, which is specifically designed for 

processing and visualizing EEG data. This library 

provides a function mne.io.read_raw_edf that reads the 

EDF files and converts them into a format that can be 

manipulated in Python. 

 B. Data Processing 

The data processing stage is crucial in preparing the 

raw EEG signals for further analysis and classification. 

The primary technique used in this stage is the Short 

Time Fourier Transformation (STFT). The STFT is a 

powerful tool for analyzing the frequency content of 

non-stationary signals, such as EEG signals, which 

change their frequency content over time [11]. The 

STFT works by dividing the continuous EEG signal into 

smaller, overlapping segments, and then applying the 

Fourier Transform to each segment. This results in a 

time-frequency representation of the signal, which 

provides information about the signal's frequency 

content at each point in time. In addition to the STFT, 

the average power levels of each EEG spectrum range 

are also extracted. The average power level in each EEG 

frequency band is computed by integrating the power 

spectral density over the frequency range of the band. 

This results in a single value for each band, which 

represents the average power of the EEG signal in that 

frequency range. These values serve as features for the 

machine learning model, providing it with information 

about the spectral content of the EEG signals. 

 C. Data Organization for the Machine Learning 

Model 

155



Once the features have been extracted from the EEG 

signals, they need to be organized in a way that can be 

easily processed by the machine learning model. In this 

project, the features are organized into a 2D array, where 

the first dimension represents the EEG power levels in 

the different frequency bands, and the second dimension 

represents the EEG channels. Each row in the 2D array 

corresponds to a different EEG channel, and each 

column corresponds to a different frequency band. The 

value in each cell of the array is the average power level 

of the corresponding frequency band in the 

corresponding EEG channel. 

In addition to the 2D array of features, each array is 

associated with a binary value that indicates whether the 

subject was performing well or poorly. This binary 

value serves as the label for the machine learning model, 

providing it with information about the desired output 

for each set of features. By organizing the data in this 

way, the machine learning model can learn to recognize 

patterns in the EEG power levels across different 

frequency bands and channels, and use these patterns to 

predict whether a subject is likely to perform well or 

poorly. This organization of data is crucial for the 

successful training and performance of the machine 

learning model. 

 D. Machine Learning Model 

The machine learning model used in this study is a 

Convolutional Neural Network (CNN), a type of 

artificial neural network that is particularly effective for 

processing grid-like data, such as time-series and image 

data. The CNN is implemented using the keras library, 

a high-level neural networks API that allows for easy 

and fast prototyping of neural networks.  The model 

consists of several layers: 

 Convolutional Layer: This is the first layer of the 

CNN. It performs a convolution operation on the 

input data using a set of learnable filters, each 

producing one feature map in the output. This layer 

is implemented using the Conv2D class from 

keras.layers. 

 Max Pooling Layer: This layer reduces the spatial 

size of the feature maps, thereby reducing the 

amount of parameters and computation in the 

network. It operates by sliding a window over the 

input and selecting the maximum value in each 

window. This layer is implemented using the 

MaxPooling2D class from keras.layers. 

 Flatten Layer: This layer flattens the input into a 

one-dimensional array, which can be fed into the 

fully connected layer. This layer is implemented 

using the Flatten class from keras.layers. 

 Fully Connected Layer: This layer performs 

classification based on the features extracted by the 

previous layers. It is implemented using the Dense 

class from keras.layers. 

 Output Layer: This is the final layer of the CNN. It 

produces the output of the model, which 

corresponds to the class predictions. This layer is 

also a fully connected layer and uses the softmax 

activation function to produce a probability 

distribution over the classes. 

Once the model is defined, it is trained on the EEG 

data using the fit method of the Sequential class. This 

method adjusts the model's weights based on the training 

data and the corresponding labels. 

The model is trained using the Adam optimization 

algorithm, a variant of stochastic gradient descent that 

has been shown to work well in practice. The loss 

function used is categorical cross-entropy, which is 

suitable for multi-class classification problems. 

During training, the model's performance is evaluated 

on a validation set, which is a subset of the training data 

not used for updating the model's weights. This provides 

an estimate of the model's performance during training 

and allows for the early stopping of training if the 

model's performance on the validation set stops 

improving. 

After training, the model's performance is evaluated 

on the testing set using the evaluate method of the 

Sequential class. This method computes the loss and any 

metrics specified during the model's compilation on the 

testing data. The performance of the model is evaluated 

in terms of accuracy, which is the proportion of correct 

predictions made by the model. The accuracy is 

computed using the accuracy_score function from the 

sklearn.metrics module. 

 E. Results interpretation 

The final step in the methodology is the interpretation 

of the results. This involves analyzing the model's 

performance and identifying any patterns or insights that 

can be derived from the results. The accuracy of the 

model provides a measure of how well the model is able 

to classify the EEG signals based on the quality of the 

count. A high accuracy indicates that the model is 

effective at distinguishing between "good count quality" 

and "bad count quality" signals. In addition to accuracy, 

other metrics such as precision, recall, and the F1 score 

can be computed to provide a more comprehensive view 

of the model's performance. These metrics can be 

computed using the corresponding functions from the 

sklearn.metrics module. The results can also be 

visualized using confusion matrices and ROC curves, 

which provide a graphical representation of the model's 

performance. These visualizations can be created using 

the plot_confusion_matrix and plot_roc_curve 

functions from the sklearn.metrics module. Finally, the 

results can be interpreted in the context of the problem 

domain 

 III. RESULTS AND DISCUSSION 

156



The EEG data used in this study consisted of 0.5-

second segments from 23 channels, providing a rich and 

complex dataset for the model to learn from. The use of 

short segments of data is advantageous in that it allows 

for the classification of cognitive states in real-time, a 

critical requirement for many applications of EEG data, 

such as brain-computer interface systems and 

neurofeedback systems.  

Our study demonstrated the utility of several data 

preprocessing and analysis techniques. For instance, we 

used Short-Time Fourier Transform (STFT) to convert 

the EEG time series data into the frequency domain, 

allowing us to extract power spectral density features for 

each frequency band (delta, theta, alpha, beta, and 

gamma). These features were then used as input to the 

CNN model. This approach allowed us to capture the 

spectral characteristics of the EEG data, which are 

known to be associated with different cognitive states. 

The results of our study demonstrate the efficacy of a 

convolutional neural network (CNN) model in 

classifying cognitive states based on 

electroencephalogram (EEG) data. The model was 

trained and validated on EEG data collected during a 

mental arithmetic task, a well-established cognitive task 

that engages several cognitive processes, including 

working memory, attention, and numerical processing. 

The training process of the convolutional neural 

network (CNN) model was a critical aspect of our study. 

The model was trained over 50 epochs, with the training 

data split into a training set (80%) and a validation set 

(20%). This split allowed us to monitor the model's 

performance on unseen data during the training process, 

providing an indication of the model's ability to 

generalize to new data. 

The training process was guided by the binary cross-

entropy loss function, a suitable choice for our binary 

classification task. The Adam optimizer was used to 

minimize this loss function. Adam, an algorithm for 

first-order gradient-based optimization, is widely used 

in deep learning models due to its efficiency and low 

memory requirements. 

During the training process, we observed a consistent 

decrease in both training and validation loss (Figure 2), 

indicating that the model was learning to classify the 

cognitive states based on the EEG data effectively. The 

training loss decreased from 0.565 in the first epoch to 

0.212 in the 50th epoch. Similarly, the validation loss 

decreased from 0.533 to 0.183 over the same period. 

These trends suggest that the model was not overfitting 

the training data, as evidenced by the concurrent 

decrease in validation loss. 

 

 
Figure 2. Model loss over 50 epochs during training 

 

Furthermore, we employed a variety of techniques to 

optimize the performance of our model. These included 

the use of dropout layers to prevent overfitting, max 

pooling layers to reduce the dimensionality of the data, 

and an early stopping callback to halt training when the 

validation loss ceased to decrease. These techniques 

contributed to the robust performance of our model. 

To further prevent overfitting, we employed dropout 

layers in our model. Dropout is a regularization 

technique that randomly sets a fraction of input units to 

0 at each update during training, which helps to prevent 

overfitting by ensuring that the model does not rely too 

heavily on any single feature. In our model, a dropout 

rate of 0.25 was used after the convolutional and max 

pooling layers, and a rate of 0.5 was used before the final 

dense layer. 

In addition to monitoring the loss during training, we 

also tracked the model's accuracy on the training and 

validation sets. The model achieved a final training 

accuracy of 89.6% and a validation accuracy of 92.1% 

(Figure 3). These high accuracy rates, along with the low 

loss values, indicate that the model performed well on 

both the training and validation sets. 

 
Figure 3. Model accuracy over 50 epochs during 

training  
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To evaluate the model's performance in more detail, we 

constructed a confusion matrix based on the model's pre-

dictions on the validation set (Figure 4). The confusion 

matrix provides a comprehensive overview of the mod-

el's performance, showing the number of true positives, 

true negatives, false positives, and false negatives. This 

information can be used to calculate various perfor-

mance metrics, such as the F1 score and Matthews Cor-

relation Coefficient (MCC), providing a more nuanced 

understanding of the model's performance than accuracy 

alone. 

 

 

Figure. 4 Confusion matrix for the validation sample of 

the dataset (TP = 12337, TN = 444, FP = 78, FN = 

49). 

Sensitivity measures the proportion of actual positives 

that are correctly identified which in this case is 96.2%. 

Specificity measures the proportion of actual negatives 

that are correctly identified, in the case of this model it 

is 85%. Accuracy is the ratio of correctly predicted 

observations to the total observations and for the 

respective model it is 93%. In order to validate the 

perceived accuracy, the F1 score, which is the the 

weighted average of Precision and Recall, useful for 

uneven class distribution and MCC which is a measure 

of the quality of binary classifications, advantageous 

over F1 score as it takes into account true and false 

positives and negatives and is generally regarded as a 

balanced measure which can be used even if the classes 

are of very different sizes were used. The F1 score and 

MCC for the respective model 96.2% and 82.7% 

respectively.  

The model's performance was evaluated by experts in 

the fields of psychology and machine learning, who 

rated the system as correct and suitable for further 

development and improvement. This expert validation 

lends further credibility to our results and underscores 

the potential of our model for future research and 

applications. 

One of the significant outcomes of this research is the 

optimization of the system for real-time classification of 

cognitive states. This feature opens up new avenues for 

the application of this system in Brain-Computer 

Interface (BCI) systems with real-time activity and 

Neurofeedback systems. The ability to classify 

cognitive states in real-time can significantly enhance 

the functionality and effectiveness of these systems, 

making this research a valuable contribution to the field. 

 

 IV. CONCLUSION 

The developed model has demonstrated robustness 

and a significant potential for application in the field of 

cognitive sciences. The model, based on Convolutional 

Neural Networks (CNNs), was trained to classify 

cognitive states during arithmetic tasks using EEG data. 

The EEG data, collected from 23 channels with a time 

length of 0.5 seconds, was transformed into frequency 

bands, namely delta, theta, alpha, beta, and gamma, 

which are known to be associated with different 

cognitive processes. 

The model was trained over 50 epochs, demonstrating 

a convergence to an impressive 94% validated accuracy 

and a low validated loss of 15%. The training process 

was carefully monitored and adjusted using early 

stopping and learning rate reduction techniques to 

prevent overfitting and ensure the model's 

generalizability to unseen data. The model's 

performance was further validated by experts in the 

fields of Psychology and Machine Learning, affirming 

its correctness and suitability for further development 

and improvement. 

The model's performance metrics, including 

sensitivity, specificity, accuracy, F1 score, and 

Matthews Correlation Coefficient (MCC), were 

calculated based on the confusion matrix. The model 

achieved a high sensitivity of 0.962, specificity of 0.850, 

accuracy of 0.932, F1 score of 0.962, and MCC of 0.827. 

These metrics indicate that the model is highly effective 

in correctly classifying both the positive and negative 

classes, with a balanced performance even in the 

presence of class imbalance. 

The success of this model opens up exciting 

possibilities for its application in real-time Brain-

Computer Interface (BCI) systems and Neurofeedback 

systems. It provides a robust foundation for the 

development of future models aimed at understanding 

and interpreting cognitive phenomena in psychology, 

neurology, and cognitive neuroscience. 

This work has demonstrated the feasibility and 

effectiveness of using deep learning models, specifically 

CNNs, for the classification of cognitive states based on 

EEG data. The model's high performance, coupled with 
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its potential for real-time application, makes it a 

valuable tool for advancing research in cognitive 

sciences. Future work could focus on refining the model 

with larger datasets, exploring other neural network 

architectures, and applying the model to other cognitive 

tasks and conditions. 
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