
26th IMEKO TC4 International Symposium
24th International Workshop on ADC and DAC Modelling and Testing
IMEKO TC-4 2023
Pordenone, Italy / September 20-21, 2023

Custom Synthesizable VHDL Processor for
Embedded Capacitive Angle Sensor

Data Processing
Milos Drutarovsky1, Ondrej Benedik2, Miroslav Sokol1, Pavol Galajda1, Jan Saliga1, Jan Ligus2,

Cristian D Stratyinski2

1Technical University of Kosice, Letna 1/9, 042 00 Kosice, Slovakia, Milos.Drutarovsky@tuke.sk
2CTRL Ltd., Omska 14, 040 01 Kosice, Slovakia, Cristian.Stratyinski@ctrl1.eu

Abstract – We describe custom architecture of a small
synthesizable soft processor for the next generation
of proprietary capacitive angle sensor (CAPSE) devel-
oped by CTRL company for space applications. We
process data streams from ADCs by custom developed
16-bit processor. The processor is written in platform
independent VHDL code. It uses a small Leros (soft
processor) control unit and several custom coproces-
sors including CORDIC, fixed-point fractional multi-
plier, and adder with barrel shifter optimized for frac-
tional fixed-point arithmetic. We describe architec-
ture of the proposed processor and present the results
of developed custom processor mapping to the target
FPGA circuit. The complete processor occupies only
∼2100 Logic Elements in target FPGA and complete
firmware has less than 220 instructions. For a 10 kHz
sampling rate, it requires less than 3 MHz system clock
frequency.

I. INTRODUCTION
The robust and reliable measurement of the absolute an-

gle of rotation has an important role in positioning systems
in space mechanisms in order to check and control the po-
sition of the mechanism moving parts. Position sensors
have a significant impact on the performance, function-
ality, and reliability of space mechanisms and space mis-
sions. Capacitive encoders are quite attractive because they
can be easily manufactured as small units with simple con-
struction and low power consumption [1]. The proprietary
capacitive sensor CAPSE shown in Fig. 1 was developed
by CTRL company [2], within ESA supported activity.

CAPSE is a contactless angular sensor, that measures
the rotation angle between its rotor mechanical part and its
stator mechanical part. The uniqueness of the design is a
measurement of absolute angle values, low susceptibility
to vibration, temperature error canceling, working in vac-
uum/air or lubricant conditions, small particles do not af-
fect the performance, easy and fast design scalability, man-
ufacturing and its integration.

The ultimate future goal of CAPSE development is to re-
place the currently used RadHard microcontroller (MCU)

Fig. 1. CAPSE sensor prototype with embedded RadHard
microcontroller.

used in CAPSE Engineering Qualification Model (EQM)
by a custom digital Application Specific Integrated Circuit
(ASIC). In this paper we describe the first step in this ef-
fort, the developed custom synthesizable VHDL proces-
sor with specialized peripherals implemented for efficient
processing of signals acquired by Analog to Digital Con-
verters (ADCs) from CAPSE sensor. We mapped our cus-
tom processor into FPGA as a proof of concept in the first
stage of future ASIC development in the actual CAPASIC
project.

II. EXPERIMENTAL CAPASIC HARDWARE
The CAPASIC project moves main processing functions

(data preprocessing of 3 separate digitized analog input
channels, math for angle computation, angle linearization,
interfaces and status of computation monitoring) into the
custom digital Hardware (HW). We describe proposed cus-
tom HW in synthesizable VHDL and map it currently into
the off-the-shelf FPGA circuit. This allows us to map, test
and optimize the main CAPASIC functionality (referred to

109

CAPASIC Breadboard (HW1)

Interface Breadboard (HW2)

CDC ASIC

CDC ASIC

CDC ASIC

MCU
FPGA
CORE

CAPASIC
Modules
Functions
Algorithms

Fig. 2. Experimental CAPASIC hardware.

as FPGA CORE in further text and shown in Fig. 2) already
in current project development stage with real capacitive
analog sensor prototype.

A. Analog interface board
The analog Interface Breadboad (HW2) uses 3 separate

ADCs for data acquisition. The ESS214D [3] rad-hard tol-
erant capacitive sensor signal conditioner integrated circuit
(CDC) realized as ASIC includes also sigma-delta ADC.
The inputs of CDC ASICs connect directly to the analog
capacities of absolute CAPSE rotary encoder. The HW2
provides digital data representing actual values of 3 moni-
tored capacities in real-time. Developed and implemented
FPGA CORE algorithms are not limited only to the used
CDC ASIC, and, in principle, we can use also other sigma-
delta ADCs in future designs.

B. MCU based development interface
The MCU provides flexible development interface for

transformation of CDCs data to the format required by
FPGA CORE development and testing of the interface. For
development we use off-the-shelf development board with
ARM based MCU. It provides us the following main func-
tionality:

• I2C (optionally SPI) for interface to CDC ASICs.

• Parallel I/O (PIO) for communication with FPGA
CORE.

• UART interface for debugging and development.

III. ARCHITECTURE OF PROPOSED FPGA CORE
The main function of the FPGA CORE (shown in Fig. 3)

is real-time processing of 3 acquired parallel data streams
provided by CDCs. The FPGA CORE performs main sig-
nal processing functionality required for computation of
actual angle α from acquired CDC data streams in real-
time. The main time-critical tasks executed by FPGA
CORE are:

• Sequentially read all input data streams from PIO in-
terface with required resolution.

CORDIC

CU

ADDER

MULT

DATA
RAM

CODE
ROM

FIR
Filter

#1
#2

#3
Optional

Optional

Optional

PIO

CPU

DATA

ADDR

R

W

IRQ

Fig. 3. Block diagram of FPGA CORE hardware.

• Optionally filter input data by decimation FIR filter.
Former CAPSE MCU implementation uses a simple
averaging FIR filter so we added this block as an op-
tion to the FPGA CORE. This block is currently not
used.

• Preprocessing (DC offset removing, gain compen-
sation, component transformation) of acquired data
from ADCs.

• Compute angle of rotation α by using trigonometric
arctan() function.

• Compensate non-idealities of analog part by piece-
wise linear correction of computed angle.

• Post-process output data (output data formatting, pro-
viding status information about quality of input data).

The FPGA CORE consists of several hardware blocks:

A. Control Unit (CU)
A simple CU is required for the control of datapaths im-

plemented as separate external HW blocks. We selected
a simple 16-bit Leros processor available as VHDL based
soft/processor [4]. It has Harvard architecture with sep-
arate Program Memory (PM) and Data Memory (DM),
small number (∼20) of really used instructions and can be
easily extended. The small and fully customizable Leros
design is relatively slow but it is not a bottleneck for over-
all performance as main data processing tasks are executed
by the external datapaths.

B. Fixed-point 16-bit hardware multiplier
We use a standard Booth's algorithm based fractional

signed 16-bit fixed-point multiplier (MULT) as an external
HW coprocessor for implemented CU. It uses input data
scaled into fractional (-1,1) interval similarly as is done in
a typical fixed-point digital signal processor. The MULT is
connected to the external peripheral address and data buses
of CU and provides 16-bit signed result (the high signifi-
cant word) in fractional format. The CU has access also

110

to the low significant word of multiplication result, but due
to proper scaling of data in implemented algorithms, it is
not required in the final data processing algorithms. The
MULT is implemented as a pure combinatorial circuit and
provides result with latency of 1 CU clock cycle.

C. Fixed-point 32-bit adder
A 32-bit fixed-point adder (ADDER) is used as an ad-

ditional external HW coprocessor for implemented CU. It
contains also parallel barrel shifter for fast extraction of
properly scaled 16-bit output words out of the input 32-bit
ADC ones. This coprocessor enables fast removing of DC
offsets from input data streams and selection of 16 most
significant data bits after DC offset removing. The CDC
ASIC uses a sigma delta ADC with up to 32-bit config-
urable output word-length, but in principle, any ADC with
compatible word-lengths can be used.

D. CORDIC coprocessor
Implemented signal processing algorithm requires com-

putation of trigonometric function

α = arctan

(
Y

X

)
(1)

for evaluation of angle of rotation α in all 4 quadrants,
where Y and X are represented as fractional fixed point
numbers. A sequential CORDIC (COordinate Rotation
DIgital Computer) algorithm [5] based fixed-point copro-
cessor with 16-bit input/output interface uses a modifica-
tion of VHDL code from [6]. The CORDIC interfaces to
the external peripheral address and data buses of CU and
provides 16-bit resolution in full 2π radians angle range.
The internal precision of computation and number of itera-
tions of CORDIC are configurable before synthesis. Ac-
tually used values are 20 bits for the width of internal
CORDIC datapath and 16 iterations (clock periods). These
values ensure lower overall errors than required by the
actual specification. The CORDIC coprocessor uses the
same clock as CU, but in principle, we can use also higher
separate clock signal.

E. Parallel interface with interrupt handling (PIO)
The PIO interface to an external MCU is implemented as

a set of two separate small Dual-Port Memories (DPMs).
DPM1 is used for CU → MCU direction (CU can write
only, MCU can read only) and DPM2 is used for MCU
→ CU one (MCU can write only, CU can read only). Ad-
ditionally, the CU has read only access to the PIO STA-
TUS register. The DPM1 has only four 16-bit words
DATA0−3 addressed by address bits ADDR(1:0) and
mapped to the specific address locations. The DPM2 has
eight 16-bit words DATA0−7 in order to support efficient
transfer of 3 data channels from MCU to CU. The CU sig-
nalizes by interrupt line (sets IRQ) to the MCU automati-

cally by writing to the specific DATA register in DPM1.
The MCU clears automatically pending IRQ by writing to
the specific DATA register in DPM2. The external MCU
interface uses a set of standard signals: 16-bit ADDRES
bus, 16-bit DATA bus, RD, WR and IRQ. The PIO block
is mapped to the I/O space of CU. The CU can read ac-
tual status of IRQ (properly synchronized to the CU clock
domain) that is mapped to the STATUS register.

We assume the MCU clock is not synchronous with the
CU clock. For reliable cross domain clock crossing we use
”Flancter” based hardware synchronization circuit [7] and
HW controlled interrupt line.

F. Optional decimation FIR filter
A FIR filter can be used for additional filtration of input

data streams in order to suppress input noise and increase
input data resolution. Filtration is currently not yet imple-
mented and optional simple averaging is computed by CU.

G. Optional UART
A simple Universal Asynchronous Receiver-Transmitter

(UART) is actually connected to the CU. We use UART for
communication with an external computer during develop-
ment and debugging of complete HW and Firmware (FW)
design. The UART will be removed from the final stable
design.

IV. FIRMWARE OF THE PROPOSED FPGA CORE
The FPGA CORE functionality follows developed

mathematical expressions already tested in the former ex-
perimental CAPSE MCU implementation. The experi-
mental MCU implementation used floating-point imple-
mentation.

The proposed CAPASIC implementation maps these al-
gorithms into digital FPGA CORE HW blocks with the
aim to decrease overall HW complexity and maintain re-
quired precision of computation with small HW resource
requirements. Hence, we use fractional fixed-point arith-
metic in all implemented signal processing algorithm steps
mapped into the FPGA CORE shown in Fig. 4.

The implemented algorithms are controlled by CU
firmware stored in the PM of implemented CU. The PM
contains less than 256 CU instructions that are encoded
as a simple loop even without subprogram calls (although
subroutine calls are also supported in Leros CU). The
firmware is written in assembler of Leros CU. The instruc-
tions are used for mapping of intermediate data to/from de-
scribed hardware coprocessors and reading (and waiting)
of corresponding status information.

The implemented firmware supports also a ”boot phase”
during which all relevant parameters are downloaded from
an external MCU via PIO interface to the DM of CU. These
parameters include:

111

DC offset removing
+gain compensation

Read CDC data
via PIO interface

FIR filter and
decimation

Component
transformation

Angle computation
(CORDIC)

Angle linearization

Write results to PIO
interface

Fig. 4. Flowchart of implementd signal processing algo-
rithms steps.

• Offsets and gains for compensation of errors of input
analog sensor parts.

• System parameters used for monitoring status of input
data. The firmware also monitors and reports in real-
time (via status register) some fault conditions caused
by fault input data.

• Calibration constants for simple piece-wise lineariza-
tion. The firmware supports Nseg=8, 16, 32 and 64-
point linearization.

Currently used Leros HW implementation supports up
to 256 words of DM with memory words that are directly
mapped as CU registers. The complete FW uses only 20
DM words for all implemented signal processing steps ex-
cept for linearization routine. We implemented a simple
linearization routine [8] with correction curve based on
Nseg piece-wise linear segments. We adapted correction
coefficients for usage of fractional fixed-point multiplier.
In contrast to [8], we use calibration coefficients that mini-
mize Minimum Min Square Error (MMSE) in each of Nseg

segments. The linearization routine requires 2 additional
DM words per one linearization segment. This limits sup-
port for max Nseg = 64-point linearization in available
DM with 256 words.

V. EXPERIMENTAL RESULTS
We implemented all described blocks as parametrized

VHDL code and we do not use specific FPGA HW blocks.
E.g., usage of embedded FPGA multipliers was inten-
tionally disabled in order to enable porting of developed
VHDL code to the future ASIC design. We prepared
VHDL testbench files for independent testing of all devel-
oped HW blocks in Modelsim simulator. Functional and
timing simulations (after mapping to the low-cost MAX
10 FPGA) were performed in Modelsim to confirm proper
functionality of implemented blocks. Mapping and place-
ment & route to the specific FPGA HW were done by Intel
Quartus CAE tool. The expected functionality in selected
FPGA was confirmed. Prepared testbenches can be used
for testing critical paths of implemented HW blocks in the
target FPGA.

As the next step, all developed HW blocks were con-
nected and mapped to the specified peripheral memory lo-
cations of Leros CU. The complete FPGA CORE with de-
bug UART occupies 2200 Logic Elements (LEs) in the
target MAX 10 FPGA hardware. This number includes
also LEs used for storage of firmware that is mapped to the
synthetized HW and not stored in embedded FPGA Block
Memories (BMs). Resources required for implementation
of specific coprocessors are shown in Table 1 (ADDER in-
cludes also barrel shifter, CU includes also stored FW).

Table 1. FPGA resources required for implementation of
specific parts of developed FPGA CORE

MULT CORDIC ADDER CU
425 LEs 444 LEs 300 LEs 512 LEs

0 BM 0 BM 0 BM 2 BMs

We used data acquired from analog sensor testbench de-
veloped in previous CAPSE project for extensive testing
of developed custom processor digital hardware. The raw
input data for angle rotation α ∈ ⟨0, 2π⟩ acquired by three
20-bit ADCs are shown in Fig. 5. The input raw data
have slightly different offsets and require also different
gains compensation for each of 3 processed ADC chan-
nels. The differences are caused by imperfections of ana-
log sensor sections and they are decreased by algorithms
implemented in CU firmware. The final computed angle
errors for Nsec = 8 and Nsec = 32 are shown in Fig. 6.

We tested our complete custom processor also on DE10-
Lite FPGA development board with CU clock generated by
FPGA PLL clock block. The extensive hardware tests con-
firmed proper functionality of developed custom processor
and its long-term reliable and stable operation.

Complete data processing (without decimation filtra-
tion) shown in Fig. 4 takes 212 CU clock cycles (actual
FW has 238 instructions). For an expected sampling fre-
quency Fs = 10 kHz the CU system clock frequency of

112

0 1 2 3 4 5 6 7

Angle of rotation [rad]

1.8

1.9

2

2.1

2.2

2.3

2.4

A
D

C
 d

at
a

105 Raw 3-channel testing data acquired by 20-bit ADCs

Fig. 5. Three channel testing data acquired from analog
testbench by 20-bit ADCs during complete 2π radian rota-
tion.

0 1 2 3 4 5 6 7

Angle of rotation [rad]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A
ng

le
 e

rr
or

 [r
ad

]

Angle error aftrer linearization computed by CU

Nseg=8
Nseg=32

Fig. 6. Angle error of actual angle position α computed by
developed processor in fixed-point arithmetic.

only ∼2.2 MHz is required. This is significantly lower
frequency than the one required for previous MCU imple-
mentation. The overall precision of computed angle α by
digital part is better than 13 bits that was required accord-
ing to the specified design requirements.

VI. CONCLUSIONS
We described architecture of a small custom soft pro-

cessor for proprietary capacitive angle sensor written in
synthesizable VHDL. The final custom processor occupies
∼2100 LEs (without debug UART) and uses only 2 BMs
in the target FPGA. The complete firmware has less than
250 CU instructions. Developed processor HW and FW

can replace standard MCU used in former CAPSE proto-
type with significantly lower clock frequency in compari-
son with former MCU implementation. We mapped cur-
rent version of developed processor to the specific Intel
FPGA and fully tested in Intel Quartus and Modelsim CAE
tools as well as in the target off-the-shelf FPGA develop-
ment board. We can use prepared set of VHDL testbenches
for efficient testing of developed processor HW and FW
with acquired real data records in further stages of devel-
opment. The complete design provides better than required
13-bit precision in 2π radians angle range. By changing
internal parameters of implemented coprocessors (before
synthesis) we can increase overall precision at the expense
of additional HW resources. We will use our stable and
tested VHDL code of developed custom processor as the
main signal processing block in further CAPSE sensor de-
velopment in the actual CAPASIC project.

ACKNOWLEDGMENTS
This work was supported also by the Science Grant

Agency of the Slovak Republic (project No. 1/0413/22)
and by the Slovak Research and Development Agency un-
der Contract No. APVV-22-0400.

REFERENCES
[1] X. Fan, Z. Yu, K. Peng, and Z. Chen, “A compact and

high-precision capacitive absolute angular displace-
ment sensor,” IEEE Sensors Journal, vol. 20, no. 19,
pp. 11 173–11 182, 2020.

[2] “CTRL Ltd.” http://www.ctrl1.eu.
[3] ESS214D Radiation tolerant Capacitive Sensor Signal

Conditioning IC, ES Systems, 2020, rev. 1.
[4] M. Schoeberl, “Leros: A tiny microcontroller for FP-

GAs,” in Proc. of 21st International Conference on
Field Programmable Logic and Applications, ser. FPL,
Sep 5–7, 2011, pp. 10–14.

[5] P. K. Meher, J. Valls, T. Juang, K. Sridharan, and
K. Maharatna, “50 years of cordic: Algorithms, ar-
chitectures, and applications,” IEEE Trans. on Circuits
and Systems, vol. 56, no. 9, pp. 1893–1907, 2009.

[6] “VHDL-extras library,” https://github.com/kevinpt/
vhdl-extras.

[7] R. Weinstein, Application Note: The "Flanc-
ter", http://fpgacpu.ca/fpga/Flancter_App_Note.pdf,
Memec Design, July 2000.

[8] ZMID4200 Calibration and Lineariza-
tion Manual – Analog Output, https:
//www.renesas.com/us/en/document/mas/
zmid4200-manual-cal-linearization-analog-out,
Renesas, October 2020, rev 5.0-1.

113

http://www.ctrl1.eu
https://github.com/kevinpt/vhdl-extras
https://github.com/kevinpt/vhdl-extras
http://fpgacpu.ca/fpga/Flancter_App_Note.pdf
https://www.renesas.com/us/en/document/mas/zmid4200-manual-cal-linearization-analog-out
https://www.renesas.com/us/en/document/mas/zmid4200-manual-cal-linearization-analog-out
https://www.renesas.com/us/en/document/mas/zmid4200-manual-cal-linearization-analog-out

