
26th IMEKO TC4 International Symposium
24th International Workshop on ADC and DAC Modelling and Testing
IMEKO TC-4 2023
Pordenone, Italy / September 20-21, 2023

Rapid Prototyping of Vehicle Software Defined
Functions

Jan Sobotka1, Jiří Novák1, Jiří Pinkava1

1Czech Technical University in Prague, Prague, Czech Republic, jan.sobotka@fel.cvut.cz

Abstract – A modern car is made up of a consider-
able amount of software running on many Electronic
Control Units interconnected by communication in-
frastructure. Together it creates a rigid system, which
is not easy to modify for running modified or custom
code to implement new vehicle functions or gathering
scientific data. The paper presents a modified (electric)
vehicle architecture allowing rapid prototyping. The
architecture enables control of particular vehicle func-
tions by an independent computer, arbitrary vehicle
data acquisition, and offers an interface for communi-
cation with the driver. Car-dependent and independent
layers are used to provide an abstraction and hide de-
tails of a specific car model.

I. INTRODUCTION
Passenger cars are object of research activities focused

on many research areas. They include, e.g., vehicle stabil-
ity control, passenger comfort, simple and advanced driver
assistance systems, and so on, up to autonomous driving
technologies. Implementing a new algorithm into a stan-
dard production car to validate it is often as challenging
for an independent researcher as the research itself. To-
day passenger cars mostly use a domain-oriented architec-
ture of in-vehicle electronic systems, which relies on a high
number of Electronic Control Units (ECUs) interconnected
by different networking technologies [1]. Details about
particular ECUs functionality [2], as well as data commu-
nication [3] over the in-vehicle networks, are subject of
public access restrictions. In addition, each car manufac-
turer uses its own architecture of internal electronic sys-
tems and in-vehicle networking. The complexity and lack
of information for implementation on a real car often lead
to the validation of research results on models of the vehi-
cle or its subsystem [4]. These models, either intentionally
or by mistake, often miss important aspects of reality, and
the validity of the research validation is then limited. In
some cases, the research results should be validated by the
driver and passengers (user experience); here, the actual
implementation of the research result is essential. To pro-
vide solution, the HW/SW framework was designed and
developed, which hides the vehicle-dependent implemen-
tation details. It provides high-level API allowing informa-
tion acquisition from the vehicle (e.g., vehicle speed, inter-
nal and external temperature, seat occupation, air condition

settings) and simultaneous control of selected vehicle func-
tionalities (e.g., air condition settings, adaptive cruise con-
trol settings, infotainment settings, drive mode settings) in
a vehicle (and possibly the vehicle manufacturer) indepen-
dent way. A new prototype functionality can thus reside
on the top of the framework, utilize the data available from
vehicle information systems, and control vehicle settings
according to the researcher goals.

II. E/E ARCHITECTURE MODIFICATION
ANALYSIS

Electronic functionalities are implemented in various
ways. It depends on the used E/E (Electrical/Electronic)
architecture [1]. Typical vehicle architecture evolves from
several isolated systems over communicating specialized
ECUs towards general ECUs over time. This section an-
alyzes modification possibilities for the rapid prototyping
of new software-defined functionalities.

A. ECU Software Modification
A natural way for rapid prototyping of a new feature is

a modification of ECU software. The situation is compli-
cated by two facts. First, running own code on an ECU
without manufacturer support is a challenging task [5], as
often even the car manufacturer does not have the origi-
nal source codes available. Second, I/Os are distributed
over multiple ECUs; thus, code modification in a single
ECU might not be sufficient. For rapid prototyping, it is
necessary to have the ability to extend existing code for a
new feature. Running its own software on ECU hardware
thus leads to the implementation of complete ECU soft-
ware, including communication with the rest of the car.
This is nearly impossible for an independent researcher, so
the following methods can be used.

B. Physical Signals Modification
Every vehicle electronics system uses some sensors and

actuators. Modification of input signals, as well as out-
put signals, is the first possibility for alternating the system
behavior. This approach is widespread in Hardware-in-the-
loop (HIL) testing [6]. The disadvantage of this technique
is a limited generality. Different types of sensors and ac-
tuators require specific solutions. Also, the concurrent us-
age of I/O for an existing and prototyped function could be
problematic.

88



C. Communication Modification
Modern passenger cars reside on in-vehicle communi-

cation. Several communication standards are used. The
most commons are CAN/CAN FD, LIN, Automotive Eth-
ernet, and FlexRay. In the rest of the paper, CAN/CAN
FD technology is assumed. A widespread scenario is a
communication among the ECUs based on the exchange
of entities called signals. An example of the signal is out-
side temperature measured by an ECU and broadcasted
to other network nodes by CAN bus [7]. Switch status
(pressed/released) checked and transmitted in respective
CAN message by one ECU can be another example. The
message is received by other ECU and used to control the
output as required. To change the switch state, the ded-
icated communication device that filters and/or modifies
the original message and sends a modified one toward the
ECU of interest should be used.

D. Service-Oriented Architectures
Not only signal communication is used in modern vehi-

cles. Service-oriented protocols are becoming an integral
part of modern cars. These protocols can either be propri-
etary or open. An example of an open protocol is Scalable
serviceOriented MiddlewarE over IP (SOME/IP) [8] as a
part of AUTOSAR. A representative of a proprietary pro-
tocol can be BAP (Bedien und Anzeigeprotokoll), used in
Volkswagen Group vehicles. The advantage of services-
oriented communication is that requests for service pro-
vided by ECU can come from any other ECU. And thus,
the service requests can be generated using a suitable com-
munication interface connected to a bus.

III. CAR ARCHITECTURE FOR RAPID
PROTOTYPING

The presented platform for rapid prototyping of new ve-
hicle functionalities uses the principles described above
in paragraphs C. and D. Overall architecture is depicted
in Fig. 1. The central element is the industrial computer
Advantech ARK-3520P. Used technologies require some
up-to-date desktop Linux distro. In our case, it is Ubuntu
22.04.

Car electronics infrastructure

CAN filter/modifier Car HMI modifier

Raw Data logging Functionality Controller

Data processing

Data loggers

Prediction models
Prediction mdels

Prototype functionality
Multi-purpose automotive-grade PC with Linux

HMI Controller

D
at

a 
A

cq
u

is
it

io
n

 M
o

d
u

le

Car REST API

Car dependent layer

Fig. 1. Car Architecture for Rapid Prototyping

All the platform services are available at the Car REST
API [9], which is vehicle (and vehicle manufacturer) inde-
pendent. The car-dependent layer consists of three mod-
ules, providing for vehicle data acquisition, required ve-
hicle functionality control, and access to vehicle infotain-
ment screen (user-defined screens, driver touch responses).
Each of these software modules is supported by the hard-
ware modules that physically interfere with the car’s func-
tions (see Fig. 2).

CAN 1

COM port

CAN

CAN
CAN

Gateway
CAN 0

HDMI
LVDS Out (LCD)

IPU
Display
Switch

C
om

pu
te

r

Installed
car equipment

Remote Desktop

Ethernet

BAP
Transciever

Ethernet 2

CAN

CAN

CAN

CAN

CAN
Gateway

LVDS In (Infotainment)

CAN 2 CAN

Fig. 2. Car Hardware Setup

A. Data Acquisition Module
The Data Acquisition module is implemented using

Data loggers HW layer, consisting of external CAN
FD/USB interfaces. They are supported by the native
Linux CAN interface SocketCAN. DAQ module receives
CAN messages from an in-vehicle network and interprets
them using industry-standard .dbc definition file into the
physical quantities. Simultaneously the BAP protocol
messages (carried in specific CAN messages) are parsed,
providing complete information about the vehicle state and
activities. The stream of acquired vehicle signals (in JSON
format) is pushed to the TCP endpoint configured (using
the Car REST API) from the prototyped application. Each
signal value is accompanied by its timestamp.

B. Functionality Controller Module
The preferred way to control the car functionalities is

real-time manipulation of in-vehicle communication net-
works. The data manipulation system structure is shown
in Fig. 3. To independently control selected vehicle func-
tionalities, the CAN Gateway (GW) modules (providing
real-time manipulation with CAN message) are inserted
into the internal vehicle communication paths. Their activ-
ities (which are independent of specific vehicle function-
ality that should be initiated) are controlled by a Func-

89



ECU 1 ECU 2CAN GW1

Safety

CAN CAN

Control CAN FD

ECU 3 ECU 4CAN GW2

Safety

CAN CAN

Low-level 

commands

Fig. 3. CAN Gateway Application Principle

tionality Controller module. The CAN Gateway allows
blocking/passing selected messages, modifying their con-
tent (with respect to some application layer constraints),
and transmitting/monitoring chosen messages. The CAN
Gateway functionality is vehicle and function independent.
Thus the list of supported functionalities can be extended
without the GW firmware modification (only the Function-
ality Controller module will require a software update in
such a case). Service oriented communication used to con-
trol specific car functionalities is also implemented within
this SW module. Each CAN Gateway is equipped with an
emergency circuit – in case of any problem, the CAN Gate-
ways are bridged, and the original CAN interconnection is
restored to keep the driver and passengers safe.

C. HMI Controller
Human-Machine Interface (HMI) Controller module

provides for communication with driver/passengers. It re-
lies on video inserter and CAN GW hardware support. The
overall HMI subsystem structure is shown in Fig. 4.

Infotainment
ECU

Infotainment 
Display

CAN GW

Video 
Inserter

Computer Unit

Display CAN

LVDS

HDMI
Control CAN

Fig. 4. HMI Control Application Principle

Video inserter is placed between the vehicle Infotain-
ment ECU and its display. It allows switching between
the standard video source (Infotainment ECU) and the user
prototype generated video (HDMI output of Linux com-
puter). In case the prototype SW needs to use the car dis-
play, the display is switched to the prototyped screen, and
the user response is awaited (see Figure 5). The display

is connected by the FDP-Link interface. The display unit
supports touch-screen functionality – user actions are re-
ported from the display to the Infotainment ECU by CAN
messages. The CAN GW module is used here again, al-
lowing redirection of touch screen message of interest,
when the response on prototype generated screen is ex-
pected. Simultaneously it blocks the touchscreen messages
transport from display to Infotainment ECU when proto-
type software generated screen is active (to avoid false car
Infotainment ECU reactions).

IV. RESULTS - PLATFORM USAGE EXAMPLES
Rapid-prototyping platform allow its user to design and

validate applications that may change the way how drivers
use their cars. The application can use information from
in-vehicle networks (Data Acquisition subsystem), control
selected car functionalities (Functionality Controller sub-
system), and use internal user interface (HMI Controller
subsystem), all available at the vehicle-independent car
REST API. To evaluate the platform’s functionality and to
show its ease of use, we have designed and implemented
two groups of examples. Within the first group, there are
classical (rule-based) applications, and within the second,
the machine learning (ML) based applications. All the
below-described applications can be configured using car
HMI.

A. Classical Application Examples
The first example application uses car-provided infor-

mation about the actual location and external map sources
to get information about the tunnels. It implements au-
tomated activation of internal air circulation when the car
approaches the tunnel and switches it back when the tun-
nel is left. This functionality can be configured as fully
autonomous or user-confirmed. The second example ap-
plication uses car-provided information about the internal
temperature and seats occupation. If the temperature is be-
low the limit, occupied seat heating is activated. The tem-
perature limits and heating level can be configured indi-
vidually for particular seats. This application can easily be
extended to support automated control of seat ventilation
if supported by car hardware.

B. Machine Learning based Examples
The third example application again uses the car-

provided information about the actual location. Simulta-
neously it acquires information about the ACC (Adaptive
Cruise Control) activity and required car speed (in case the
ACC is active). During the training phase, the ML model
learns the way the driver uses ACC. When trained, its pre-
dictions are used to (de-)activate the ACC and set the re-
quired speed (after the simple confirmation from the driver
(see Fig. 5). The fourth implemented example is focused
on car infotainment. On weekday mornings, the driver

90



regularly takes the children to school. They always ask
him/her to activate the function of playing songs from their
mobile phone via infotainment. An ML-based application
receives information about the date/time, seat occupation,
and infotainment setting. It learns the usage pattern and
autonomously activates the audio source to the children’s
phone when they get on and back to the driver’s favorite
radio station when they get off.

Fig. 5. Prediction Based ACC Activation Offer

V. CONCLUSION
The platform for rapid prototyping of new vehicle fea-

tures was presented. It addresses the problem of rapid pro-
totyping or evaluating new software-defined functions, al-
gorithms, and data acquisition on production vehicles. The
main capabilities are data acquisition of information avail-
able on in-vehicle networks, independent control of se-
lected vehicle functionalities, and HMI access. The used
approach can be adapted to vehicles of different manufac-
turers, but quite detailed information is required. The pre-
sented platform was incorporated into Škoda Kodiaq and
Škoda Enyaq Coupé RS iV. Thanks to the shared vehicle
platforms, it is pretty straightforward to implement the pro-
posed solution into any car of the VW group.

Further rapid prototyping platform development is
planned to focus on three areas. First is the usage of
SOME/IP services over the Automotive Ethernet within
the Functionality Controller. Second is the extension of the
platform hardware layer with LIN Gateways. They pro-
vide similar services as CAN Gateways described above,
but for the LIN networks. Finally, the HMI will be im-
proved to support voice input (instead of touchscreen re-
sponse, which distracts the driver much more).

ACKNOWLEDGMENT
This research has been realized using the support of

Technology Agency of the Czech Republic, programme
National Competence Centres, project #TN01000026
Josef Bozek National Center of Competence for Surface
Transport Vehicles. This support is gratefully acknowl-
edged.

REFERENCES
[1] A. G. Mariño, F. Fons, and J. M. M. Arostegui, “The

future roadmap of in-vehicle network processing: A
hw-centric (r-) evolution,” IEEE access, vol. 10, pp.
69 223–69 249, 2022.

[2] J. Van den Herrewegen, “Automotive firmware extrac-
tion and analysis techniques,” Ph.D. dissertation, Uni-
versity of Birmingham, 2021.

[3] M. Zago, S. Longari, A. Tricarico, M. Carminati,
M. G. Pérez, G. M. Pérez, and S. Zanero, “Recan–
dataset for reverse engineering of controller area net-
works,” Data in brief, vol. 29, p. 105149, 2020.

[4] X. Pan, C. Zivkovic, and C. Grimm, “Virtual prototyp-
ing of heterogeneous automotive applications: matlab,
systemc, or both?” in Proceedings of the 24th Asia and
South Pacific Design Automation Conference, 2019,
pp. 544–549.

[5] P. Nasahl and N. Timmers, “Attacking autosar using
software and hardware attacks,” 2019 Embedded Se-
curity in Cars USA, 2019.

[6] D. d. S. A. Loura, F. F. V. de Melo Ferreira, and R. C.
da Costa, “Hardware-in-the-loop alternative approach
for an esp verification,” SAE Technical Paper, Tech.
Rep., 2022.

[7] S. Yong, Y. Ma, Y. Zhao, and L. Qi, “Analysis of the
influence of can bus structure on communication per-
formance,” in IoT as a Service: 5th EAI International
Conference, IoTaaS 2019, Xi’an, China, November 16-
17, 2019, Proceedings 5. Springer, 2020, pp. 405–
416.

[8] D. Martin, L. Völker, and M. Zitterbart, “A flexible
framework for future internet design, assessment, and
operation,” Computer Networks, vol. 55, no. 4, pp.
910–918, 2011.

[9] K. Relan, Building REST APIs with Flask: Create
Python Web Services with MySQL, 1st ed. USA:
Apress, 2019.

91


