
26th IMEKO TC4 International Symposium

24th International Workshop on ADC and DAC Modelling and Testing

IMEKO TC-4 2023

Pordenone, Italy / September 20-21, 2023

Lossless real-time signal encoding for

two-channel signals: A case study on ECG

Jozef Kromka, Ondrej Kovac, Jan Saliga

Technical University of Kosice, Letna 9, 04200 Kosice, Slovakia

e-mail addresses: {jozef.kromka, ondrej.kovac, jan.saliga}@tuke.sk

Abstract – This paper introduces a new encoding

algorithm for the lossless, fast, and memory-efficient

compression of two-channel signals. The proposed

algorithm was evaluated using Electrocardiogram

(ECG) signals. The results indicate that it can

effectively compress ECG signals with a favorable

compression ratio (CR), without relying on complex

predictors, dictionaries, detectors, or additional

encoding methods. By employing this method, an

average CR of 1.98 was achieved, with a minimum CR

of 1.54 and a maximum CR of 2.36. Moreover, it is

assumed that the algorithm has the potential to

enhance the achieved compression in Compressed

Sensing (CS) systems.

 I. INTRODUCTION

Lossless encoding algorithms are a type of compression

techniques that allows for the reduction of data size

without losing any of the original information. This

property makes them particularly useful for applications,

where keeping the original quality of data is very important

[1]. One of the fields where this property is vital is

medicine, where doctors often need accurate data to

precisely diagnose patients [2]. In modern medicine one of

the most commonly studied signals is ECG. These signals

are critical in the diagnosis and monitoring of heart

conditions, and it is important to ensure that the data

remains intact during the compression process. In addition

to the medical field, CS systems [3], [4] could also benefit

from the use of lossless encoding algorithms. The use of

such algorithms in CS systems can aid in reducing the data

size while maintaining the original CS information intact.

This, in turn, leads to more efficient and effective

compression and transmission of data, resulting in

improved CS system performance.

In recent years, numerous lossless encoding algorithms

have been proposed and tested on ECG signals. In one

study [5], an adaptive linear prediction and two-stage

Huffman coding approach was used to compress ECG

signals. Another study [6] used an adaptive region

prediction and variable length coding method. A peak

detection and backward difference Huffman coding

approach was presented in [7]. Lastly, two algorithms [8]

and [9] utilizing adaptive linear prediction and Golomb-

Rice coding were proposed. While these algorithms can

achieve a CR greater than 2, they have the disadvantage of

requiring some form of complex prediction algorithm or

a dictionary, or they have a complex implementation.

Hence, the encoding algorithms mentioned earlier may not

be suitable for use in CS systems. CS systems are often

required to compress data while maintaining low power

consumption. The additional complexity introduced by

these algorithms would increase the power consumption of

such systems, rendering them impractical for CS

applications.

This article presents a preliminary case study of the

proposed lossless real-time encoding algorithm for ECG

signals. The choice of ECG signals is based on the

assumption that the proposed algorithm can be effectively

applied to these signals. The main benefits of the proposed

encoding algorithm include its memory efficiency, ease of

implementation, lack of reliance on complex predictors,

dictionaries, detectors, or additional encoding methods.

The proposed method's advantages are intended to be

utilized in real-time systems, including CS applications.

However, at present, the proposed method has only been

evaluated on full signals and has not been tested on signals

sampled by CS systems.

The article is organized as follows: In Section II, the

overall system design for the proposed encoding algorithm

together with a flowchart is presented. The experimental

results obtained by simulation are reported in III. The

main conclusion and possible future work regarding the

method are outlined in Section IV.

 II. THE PROPOSED ENCODING ALGORITHM

In this paper, we propose an encoding algorithm inspired

by the "quite OK image format" (QOI) which is a lossless

image encoding algorithm presented by Dominic

Szablewski in [10]. The algorithm has been formally

verified by [11]. QOI is characterized by its ease of

implementation and fast processing and incorporates

commonly used techniques such as run-length encoding

and dictionary-based compression.

The proposed algorithm uses some of the techniques that

are used in QOI, but also some techniques that have been

optimized for two-channel signals. The flowchart of the

proposed encoding algorithm is shown in Fig. 1. The

encoding method employs three variables in its process.

The first variable, denoted by 𝑠, stores the current two-

26

channel sample, while the second variable, 𝑙, holds the

previous two-channel sample. The third variable, 𝑟𝑢𝑛, is

utilized for storing run-length data. These variables are

initialized to zero at the onset of the encoding process.

Subsequently, the first two-channel sample is loaded, and

encoding begins.

Fig. 1. The proposed encoding algorithm

The encoding process involves the comparison of the

two-channel sample to the previous sample, and this

comparison can yield four possible outcomes. Specifically,

the sample may have the same value as the previous

sample or the difference between the two may fall within

the interval of 〈−4, 3〉. Alternatively, the difference

between the two samples may lie within the interval of

〈−64, 63〉, or none of these cases. Each of these cases will

be discussed in detail in the subsequent text.

In the initial case, where the value of the sample is the

same as that of the previous sample, the 𝑟𝑢𝑛 variable is

incremented. Additionally, the algorithm verifies whether

the 𝑟𝑢𝑛 variable has surpassed the threshold of 63. If this

threshold is exceeded, the run byte is encoded the 𝑟𝑢𝑛

variable is set to zero. Moreover, the run byte is encoded

if the 𝑟𝑢𝑛 variable possesses a value greater than zero and

the algorithm has not entered the initial case. It should be

noted that the encoding of the run byte occurs prior to the

execution of any other cases. The run byte is encoded and

stored as illustrated in Fig. 2.

Fig. 2. Run byte encoding

The first two bits in the run byte represent the ID of the run

byte, and the remaining 6 bits store the 𝑟𝑢𝑛 variable.

When the difference between the current and previous

samples falls within the interval of 〈−4, 3〉, the difference

for both channels is calculated. This difference is then

converted into a 3-bit number, encoded, and stored

according to Fig. 3. The difference for the first channel is

denoted as 𝑑1, while the difference for the second channel

is denoted as 𝑑2.

Fig. 3. Diff1 byte encoding

In the third case, when the difference between the two

samples lies within the interval of 〈−64, 63〉 the encoding

is similar to the previous case. The only difference is that

two bytes are utilized, and the difference values are stored

as 7-bit numbers as displayed in Fig. 4.

Fig. 4. Diff2 byte encoding

If none of the previously mentioned cases apply, a raw

value of the two-channel sample is encoded. To encode

raw values, three bytes are required. The raw values of the

two-channel sample, denoted as 𝑟𝑎𝑤1 and 𝑟𝑎𝑤2, are

stored as 11-bit values. This length was chosen because the

database used for the case study contained data with this

length. The encoding of raw values is depicted in Fig. 5.

Fig. 5. Raw byte encoding

Each byte is encoded using a unique ID, which is

employed in the decoding process to enable the decoding

algorithm to determine how to decode the byte. The

decoding process is a straightforward procedure. The

decoding algorithm maintains a record of the preceding

two-channel sample and reads the encoded bytes.

Depending on the mask, the algorithm reads either one,

27

two, or three bytes. If a run byte is encountered, the

algorithm produces 𝑟𝑢𝑛 samples of the previous value. If

the diff1 or diff2 byte is read, the algorithm outputs the

value of the previous sample plus the difference. In the

final scenario, when the raw byte is read, the algorithm

outputs only the raw data contained within that byte.

 III. PRELIMINARY RESULTS AND DISCUSSION

The proposed method was evaluated using the MIT-BIH

arrhythmia database [12]. This database contains a set of

48 ECG records sampled at 360 Hz with 11-bit resolution.

The evaluation was based on two metrics: CR and the time

required for encoding and decoding. The CR was

calculated using (1)

 CR =
𝑛𝑖
𝑛𝑜
, (1)

where 𝑛𝑖 represents the number of bits used in the original

data and 𝑛𝑜 represents the number of bits after

compression.

Table 1 displays the average result obtained by the

proposed method. The results from the previously

mentioned methods are provided for comparison as well.

Table 1. Performance comparison of the proposed

method with other methods in the MIT-BIH database

Encoding technique
Average

CR

Adaptive linear prediction + two stage

Huffman coding [5]
2.53

Adaptive region prediction + variable

length coding [6]
2.67

Peak detection + backward difference

Huffman coding [7]
2.64

Adaptive linear prediction + content

adaptive Golomb-Rice coding [8]
2.77

Adaptive linear prediction + Golomb-Rice

coding [9]
2.89

The proposed method 1.98

Based on the obtained results, it can be concluded that the

proposed method produced an average CR that was

approximately 25-45% lower than that of the other recent

methods. As part of our analysis, we also report the

minimum and maximum CR. The minimum CR of

1.54 was achieved for record 112 and the maximum CR

of 2.36 was obtained for record 205.

In addition to evaluating the method's CR, an assessment

was conducted to analyze its encoding and decoding speed,

algorithm size, and the average number of instructions per

sample. The preliminary evaluation was carried out on a

personal computer equipped with an Intel Core i7-10700

processor, operating at a frequency of 2.9 GHz, and 16 GB

of RAM. The proposed method was implemented in the C

programming language and compiled on an Ubuntu

operating system running under the Windows Subsystem

for Linux. The algorithm was executed 1,000 times for

each record resulting in average encode and decode times

of 6.46 ms and 5.29 ms, respectively. With 650,000

samples per record, the average encode and decode times

per sample were 9.93 ns and 8.14 ns. Notably, the

simulation's performance may have been constrained by

the operating system's multitasking, limiting access to full

hardware resources. The algorithm's compiled size was

around 5 kilobytes, though it can vary across systems. For

32-bit or 8-bit microcontrollers, the algorithm size could

be significantly smaller. The final evaluation focused on

assessing the average execution of instructions per sample.

This assessment revealed that the system achieved an

average execution of approximately 66 instructions,

providing a quantitative measure of its computational

performance. However, it's important to consider that this

number would variate across different systems.

Optimizing the algorithm's implementation could

potentially reduce the instructions per sample, leading to

improved performance.

While the proposed method achieves a lower CR than

other recent methods, its primary advantage lies in the

algorithm's simplicity of implementation and memory

efficiency. In contrast to other methods, it does not require

complex predictors, dictionaries, detectors, or additional

encoding methods. The proposed method on the low level

utilizes only subtraction and bit-shifting operations.

Consequently, the proposed method is well-suited for use

in systems that require real-time encoding or have limited

memory or computing power resources. This feature of the

proposed method could be utilized in CS systems to

improve their efficiency as well. The proposed method

would not significantly influence the energy consumption

nor system resources and could potentially increase CR

achieved by these systems.

It is worth noting that the current implementation of the

method was designed such that all encoding bytes are

multiples of 8 bits, which allows for byte alignment. This

design feature makes it easier to implement the method on

both microcontrollers and computers. We assume that it is

possible to achieve a higher CR value by using encoding

bytes with different lengths other than 8 bits. This

approach may be well-suited for an FPGA device. The

algorithm that inspired the proposed method [10] already

has an FPGA implementation, which suggests that the

proposed method could also be easily implemented for an

FPGA device.

 IV. CONCLUSION

This article introduced a novel encoding algorithm that

is well-suited for the lossless, real-time, and memory-

efficient encoding of two-channel signals. The proposed

algorithm was tested on ECG signals, and the preliminary

results demonstrated that it achieved an average CR of

1.98. Although this CR was 25-45% lower than that

achieved by other recent methods, it was noted that the

28

proposed method does not require the use of complex

predictors, dictionaries, detectors, or additional encoding

methods. These design features make the proposed

algorithm a promising candidate for use in systems with

limited memory or computing power resources, as well as

in real-time applications.

Future work is directed to: (i) evaluating the efficiency

of the proposed encoding algorithm for ECG signals from

the PTB Diagnostic ECG dataset [13], [14], (ii) examining

the efficiency of the method when applied to signals

sampled by CS systems, (iii) performing a hardware

implementation of the proposed method using a

microcontroller and FPGA device, in order to thoroughly

assess the algorithm's speed and memory efficiency.

ACKNOWLEDGMENT

The work is a part of the project supported by the

Science Grant Agency of the Slovak Republic

(No. 1/0413/22).

REFERENCES

[1] K. Sayood, Lossless Compression Handbook.

Elsevier, 2002.

[2] J. F. Burnum, “The Misinformation Era: The Fall of

the Medical Record”, Ann. Intern. Med., roč. 110, č.

6, s. 482–484, mar. 1989, doi: 10.7326/0003-4819-

110-6-482.

[3] L. De Vito, E. Picariello, F. Picariello, S. Rapuano,

a I. Tudosa, “A dictionary optimization method for

reconstruction of ECG signals after compressed

sensing”, Sensors, roč. 21, č. 16, 2021, doi:

10.3390/s21165282.

[4] J. Kromka, O. Kováč, J. Šaliga, a L. Michaeli,

“Multiwavelet-based ECG compressed sensing with

samples difference thresholding”, v 25th IMEKO

TC-4 INTERNATIONAL SYMPOSIUM ON

MEASUREMENT OF ELECTRICAL QUANTITIES,

Brescia, Italy, sep. 2022, s. 215–220.

[5] G.-A. Luo, S.-L. Chen, a T.-L. Lin, “VLSI

implementation of a lossless ECG encoder design

with fuzzy decision and two-stage Huffman coding

for wireless body sensor network”, v 2013 9th

International Conference on Information,

Communications & Signal Processing, dec. 2013, s.

1–4. doi: 10.1109/ICICS.2013.6782955.

[6] K. Li, Y. Pan, F. Chen, K.-T. Cheng, a R. Huan,

“Real-time lossless ECG compression for low-

power wearable medical devices based on adaptive

region prediction”, Electron. Lett., roč. 50, č. 25, s.

1904–1906, 2014, doi: 10.1049/el.2014.3058.

[7] S.-C. Lai, P.-C. Tail, M.-K. Lee, S.-F. Lei, a C.-H.

Luo, “Prototype System Design of ECG Signal

Acquisition with Lossless Data Compression

Algorithm Applied for Smart Devices”, v 2018

IEEE International Conference on Consumer

Electronics-Taiwan (ICCE-TW), máj. 2018, s. 1–2.

doi: 10.1109/ICCE-China.2018.8448842.

[8] T.-H. Tsai a W.-T. Kuo, “An Efficient ECG

Lossless Compression System for Embedded

Platforms With Telemedicine Applications”, IEEE

Access, roč. 6, s. 42207–42215, 2018, doi:

10.1109/ACCESS.2018.2858857.

[9] T.-H. Tsai a F.-L. Tsai, “Efficient lossless

compression scheme for multi-channel ECG signal

processing”, Biomed. Signal Process. Control, roč.

59, s. 101879, máj. 2020, doi:

10.1016/j.bspc.2020.101879.

[10] “QOI — The Quite OK Image Format”.

https://qoiformat.org/ (cit 03. február 2023).

[11] M. Bucev a V. Kunčak, Ed., “Formally Verified

Quite OK Image Format”, Proc. 22nd Conf. Form.

Methods Comput.-Aided Des. – FMCAD 2022,

2022, doi: 10.34727/2022/isbn.978-3-85448-053-

2_41.

[12] G. B. Moody a R. G. Mark, “The impact of the MIT-

BIH Arrhythmia Database”, IEEE Eng. Med. Biol.

Mag., roč. 20, č. 3, s. 45–50, máj. 2001, doi:

10.1109/51.932724.

[13] G. Al et al., “PhysioBank, PhysioToolkit, and

PhysioNet: components of a new research resource

for complex physiologic signals”, Circulation, roč.

101, č. 23, jún. 2000, doi:

10.1161/01.cir.101.23.e215.

[14] R.-D. Bousseljot, D. Kreiseler, a A. Schnabel, “The

PTB Diagnostic ECG Database”. physionet.org,

2004. doi: 10.13026/C28C71.

29

