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Abstract – In this paper an algorithm for frequency and 

damping factor estimation of a real-valued noisy 

damped sinusoid is proposed. It is an extension of the   

three-point Interpolated Discrete Fourier Transform 

(3p-IpDFT) undamped sinusoid frequency estimator 

based on Maximum Sidelobe Decay (MSD) windows. 

Analytical expressions for the frequency and the 

damping factor estimators are provided and the related 

estimation errors due to the contribution of the spectral 

image component are derived and compensated. The 

accuracies of the proposed algorithm and other state-

of-the-art frequency-domain based algorithms are 

compared to each other through computer simulations.  

 I. INTRODUCTION 

Damped sinusoids have a relevant role in many 

application areas such as radar, nuclear magnetic 

resonance, optics, and mechanics [1]-[4]. Quite often the 

signal parameters need to be estimated accurately and in 

real-time. To that aim the so-called Interpolated Discrete-

Time Fourier Transform (IpDTFT) algorithms are often 

employed [3]-[9]. These algorithms allow to reduce the 

picket-fence effect on the estimated signal parameters due 

to the finite number of samples used in the time-frequency 

transformation. Specifically, the IpDTFT algorithms 

estimate the signal frequency and the damping factor by 

interpolating two or more relevant DTFT samples of the 

analyzed signal [3]-[9]. Moreover, to reduce the 

detrimental effect of the spectral interference from other 

spectral tones, including the image components, the 

acquired signal is multiplied by a suitable window [10]. 

The Maximum Sidelobe Decay (MSD) cosine windows 

[11] are often used since they ensure both high spectral 

leakage suppression and allow to estimate the unknown 

parameters using simple analytical expressions [9]. When 

a few sinusoids cycles are analyzed, more than two 

interpolation points are used in order to compensate the 

effect of spectral leakage from the fundamental image 

component. A three-point Interpolated Discrete Fourier 

Transform (3p-IpDFT) algorithm based on the rectangular 

window has been proposed in [12] for undamped sinusoid 

frequency estimation. Its analytical expression has been 

derived in [13] and then it has been extended to signals 

weighted by cosine windows in [14]. In this paper that 

algorithm is further extended to real-valued noisy damped 

sinusoids weighted by MSD windows. The expressions for 

both 3p-IpDFT frequency and damping factor estimators 

are firstly derived. Then the contribution of the spectral 

image component to the derived estimators is analyzed and 

the obtained expressions are used to improve estimation 

accuracy. The proposed procedure is called the improved 

3p-IpDFT (3p-IpDFTi) algorithm, and its accuracy is 

compared with that of other state-of-the-art frequency 

domain-based algorithms.           

 II. THE PROPOSED 3P-IPDTFTI ALGORITHM 

The analyzed discrete-time noisy damped sinusoid is 

modelled as: 

  𝑦(𝑚)  = 𝐴𝑒−
2𝜋
𝑀

𝛼𝑚𝑐𝑜𝑠 (2𝜋
𝜗

𝑀
𝑚 + 𝜙) + 𝑒(𝑚) 

          = 𝑥(𝑚) + 𝑒(𝑚),    𝑚 = 0, 1, 2, … , 𝑀 –  1 ,  

where x(∙) is the noise free damped sinusoid of amplitude A, 

normalized frequency , phase , and normalized damping 

factor , while e(∙) is an additive white Gaussian noise with 

zero mean and variance 𝜎𝑛
2. M is the acquisition length.  

The normalized damping factor  has been selected as 

signal parameter for symmetry with the definition of the 

normalized frequency , which also represents the number of 

analyzed signal cycles and it is expressed as:  

                                     𝜗 = 𝑙 + 𝛿,

where l is the rounded value of , and  (-0.5   < 0.5) is the 

rounding error, which corresponds to the inter-bin frequency 

location.  = 0 if coherent sampling occurs.  
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To reduce the spectral leakage contribution on the 

frequency and the damping factor estimates, the acquired 

signal is multiplied by the H-term MSD window and the 

analyzed signal becomes 𝑦𝑤(𝑚) = 𝑦(𝑚) ∙ 𝑤(𝑚). 

The DTFT of the noise free weighted damped sinusoid 

xw(m) is given by: 

                   𝑋𝑤(𝜆) = 𝑋̃𝑤(𝜆) + 𝑋̃𝑖𝑤(𝜆),

where 𝑋̃𝑤(𝜆) and 𝑋̃𝑖𝑤(𝜆) are the transforms of the 

fundamental component and the spectral image of the 

weighted damped sinusoid 𝑥𝑤(𝑚) = 𝑥(𝑚) ∙ 𝑤(𝑚), 

respectively. The related expressions are [9]: 

𝑋̃𝑤(𝜆) ≅
(2𝐻−2)!

22𝐻

𝐴𝑀

𝜋

(1−𝑒− 2𝜋(𝛼+𝑗(𝜆−𝜗)))𝑒𝑗𝜙

(𝛼+𝑗(𝜆−𝜗)) ∏ [(𝛼+𝑗(𝜆−𝜗))
2

+ℎ2]𝐻−1
ℎ=1

,a

and 

𝑋̃𝑖𝑤(𝜆) ≅
(2𝐻−2)!

22𝐻

𝐴𝑀

𝜋

(1−𝑒− 2𝜋(𝛼+𝑗(𝜆+𝜗)))𝑒−𝑗𝜙

(𝛼+𝑗(𝜆+𝜗)) ∏ [(𝛼+𝑗(𝜆+𝜗))
2

+ℎ2]𝐻−1
ℎ=1

.b

The 3p-IpDFT algorithm exploits the following 

interpolation function [14]: 

                   ℎ = 𝐻
𝑌𝑤(𝑙+1)−𝑌𝑤(𝑙−1)

𝑌𝑤(𝑙−1)−2𝑌𝑤(𝑙)+𝑌𝑤(𝑙+1)
.

Since both the spectral image component and wideband noise 

often provides minor contributions (5) can be written as: 

                   ℎ ≅ 𝐻
𝑋̃𝑤(𝑙+1)−𝑋̃𝑤(𝑙−1)

𝑋̃𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)+𝑋̃𝑤(𝑙+1)
.

By using (4a), after some algebra the following 

relationships are derived: 

𝑋̃𝑤(𝑙 − 1) ≅
𝛼−𝑗𝛿+𝑗(𝐻−1)

𝛼−𝑗𝛿−𝑗𝐻
𝑋̃𝑤(𝑙),                                                                           

                    𝑋̃𝑤(𝑙 + 1) ≅
𝛼−𝑗𝛿−𝑗(𝐻−1)

𝛼−𝑗𝛿+𝑗𝐻
𝑋̃𝑤(𝑙).

By replacing (7) into (6), after some manipulations we obtain: 

                                      ℎ ≅ 𝛿 + 𝑗𝛼.

which shows that the 3p-IpDFT inter-bin frequency location 

and damping factor estimators can be obtained as: 

                        𝛿̂ = 𝑅𝑒{ℎ}and𝛼̂ = 𝐼𝑚{ℎ},

where Re{∙) and Im{∙} are the real- and imaginary-part 

operators. 

The following Proposition provides the contribution to (9) 

of the spectral image component. 

Proposition: 

The contribution of the spectral image component on the 

estimators of the inter-bin frequency location  and the 

damping factor  returned by the 3p-IpDFT algorithm 

based on the H-term MSD window is given by: 

Δ𝛿 + 𝑗Δ𝛼 ≅ −2(𝑙 + 𝛿)
𝛼−𝑗𝛿

𝛼+𝑗𝛿+𝑗2𝑙
∙

1−𝑒−2𝜋(𝛼+𝑗𝛿)

1−𝑒−2𝜋(𝛼−𝑗𝛿)                          

           ×
∏ [(𝛼−𝑗𝛿)2+ℎ2]𝐻

ℎ=1

∏ [(𝛼+𝑗𝛿+𝑗2𝑙)2+ℎ2]𝐻
ℎ=1

∙ 𝑒−𝑗2𝜙 , 

where 𝛥𝛿 = 𝛿̂ − 𝛿 and 𝛥𝛼 = 𝛼̂ − 𝛼. The proof of this 

Proposition is given in the Appendix. 

Expression (10) allows to infer the following remarks: 

- if the signal phase changes while the other parameters are 

kept constant, as it often occurs in practice due to 

noncoherent sampling, the estimation errors  and  

exhibit two in quadrature sinewave like behaviors; 

-  the estimation errors   and  decreases as  increases. 

Fig. 1 shows the inter-bin frequency location (Fig. 1(a)) 

and the damping factor (Fig. 1(b)) estimation errors returned 

by simulations and by (10) as a function of the signal phase , 

which varies in the range [0, 2) rad with a step of /20 rad. 

A noise free damped sinusoid with A = 1 p.u.,  = 3.3 cycles, 

 = 1, and M = 512 samples is considered and the rectangular 

or the two-term MSD (or Hann) window are applied.  

 

 
(a) 

 
(b) 

Fig. 1. Real-valued noise-free damped sinusoid: simulation 

and theoretical results (10) for the contribution of the spectral 

image component to the estimated frequency  (a) and 

damping factor  (b) versus the signal phase . Sinusoid 

parameters A = 1 p.u.,  = 3.3 cycles,  = 1, and M = 512 

samples. Rectangular (H = 1) or Hann (H = 2) windows.   
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As we can see, the agreement between the theory and the 

simulations is very good. For the contribution , the 

maximum differences between the theoretical and simulated 

results are 6.3∙10-4 and 3.3∙10-5 when H = 1 and H = 2, 

respectively. Similarly, the contribution  exhibits 

maximum differences equal to 5.8∙10-4 and 3.0∙10-5 when H = 

1 and H = 2, respectively.   

Expression (10) enables the improvement of the 

algorithm accuracy. The derived procedure – called the        

3p-IpDFTi algorithm – requires to perform the following 

steps: 

Step 1: acquire M samples of the signal y(m) to be analyzed 

Step 2: compute the DFT of the weighted signal yw(m) 

Step 3: determine the integer part of the acquired signal cycles l 

Step 4:   apply the 3p-IpDFT algorithm and compute the 

estimators 𝛿̂ and 𝛼̂ using (9) 

Step 5: compute 𝜙̂ = 𝑎𝑛𝑔𝑙𝑒{𝛾}, where: 

𝛾 =
(𝛼̂−𝑗𝛿̂) ∏ [(𝛼̂−𝑗𝛿̂)2+ℎ2]𝐻−1

ℎ=1

1−𝑒− 2𝜋(𝛼̂−𝑗𝛿̂) 𝑌𝑤(𝑙), 

Step 6: compute the estimation errors  and   using (10) 

applied to the estimated values 𝛿̂, 𝛼̂, and 𝜙̂ 

Step7: compute the compensated estimates 𝛿̂𝑐 = 𝛿̂ − 𝛥𝛿  

and 𝛼̂𝑐 = 𝛼̂ − 𝛥𝛼.      

III.   ACCURACY ASSESSMENT AND COMPARISON 

In this Section the Root Mean Squares (RMSEs) of the 

proposed 3p-IpDFTi algorithm, the classical 2p-IpDFT 

algorithm [8], the Aboutanios algorithm [4], the 3p-IpDFT 

algorithm, and the 3p-RVCI-(H-1) algorithm [3] are 

compared to each other. Both the rectangular and the Hann 

windows are considered for signal weighting.  

Undistorted or harmonically distorted noisy damped 

sinusoids with amplitude A = 1 p.u. and normalized damping 

factor  = 1 are analyzed. A white Gaussian noise with zero 

mean and variance corresponding to SNR = 40 dB is added to 

the signal and 10,000 runs of M = 512 samples each with the 

signal phase  randomly chosen in the range [0, 2) rad are 

performed for each considered value of the number of 

analyzed cycles . The obtained RMSEs are reported in Figs. 

2 and 3 as a function of , which varies in the range [1.5, 8] 

cycles with a step of 0.1 cycles.  

Fig. 2 shows the RMSEs for the inter-bin frequency 

location (Fig. 2(a)) and the damping factor (Fig. 2(b)) 

estimates obtained when a noisy undistorted damped sinusoid 

is analyzed, and the rectangular window is used. Thanks to 

the compensation of the contribution from the spectral image 

component, the proposed 3p-IpDFTi algorithm well 

outperforms the others.  

Fig. 3 shows the RMSEs for the inter-bin frequency 

location (Fig. 3(a)) and the damping factor (Fig. 3(b)) 

estimates as a function of SNR when  = 3.3 cycles and  = 

1. SNR varies in the range [0, 60] dB with a step of 5 dB. 

When SNR is smaller than about 10 dB the 3p-RVCI-0 

algorithm is not able to provides accurate RMSEs estimates.  

 
(a) 

 
(b) 

Fig. 2. Real-valued noisy damped sinusoids: RMSEs of the 

frequency  (a) and the damping factor  (b) estimates 

returned by the considered algorithms versus the number of 

analyzed cycles . Damping factor  = 1, SNR = 40 dB, phase 

at random, and M = 512 samples. Rectangular window. 

 

The square root of the Cramér-Rao Lower Bound (CRLB) is 

also shown in the figure to enable a visual assessment of the 

algorithm efficiency [15]. 

In Fig. 3 it can be observed that when SNR is greater than 

about 10 dB the proposed 3p-IpDFTi algorithm outperforms 

the others since it compensates the contribution of the spectral 

image component. However, when SNR is greater than about 

40 dB the residual contribution prevails on the effect of 

wideband noise. The other considered algorithms exhibit a 

similar behavior, but at lower SNR thresholds. When SNR is 

smaller than about 10 dB outliers due to noise occur [16].   

Fig. 4 shows the RMSEs for the inter-bin frequency 

location (Fig. 4(a)) and the damping factor (Fig. 4(b) 

estimates obtained when a noisy harmonically distorted 

damped sinusoid is analyzed, and the Hann window is used. 

The signal is affected by a 2nd and a 3rd damped harmonics 

with amplitudes equal to 0.1 p.u. and 0.05 p.u., respectively, 

and damping factors equal to 1.2 and 1.5, respectively.  
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(a) 

 
(b) 

Fig. 3. Real-valued noisy damped sinusoids: RMSEs of the 

frequency  (a) and the damping factor  (b) estimates 

returned by the considered algorithms versus SNR when the 

number of analyzed cycles  = 3.3 cycles, the damping factor 

 = 1, phase at random, and M = 512 samples. Rectangular 

window. The √𝐶𝑅𝐿𝐵 is also shown. 

 

As we can see, the proposed 3p-IpDFTi algorithm 

outperforms the others when less than about 3.5 cycles are 

analyzed. For greater values of   the 3p-RVCI-1 algorithm 

provides a slightly better inter-bin frequency location. 

Conversely, the 2p-IpDFT and the Aboutanios algorithms 

return a bit more accurate damping factor estimates, while the 

3p-RVCI-1 algorithm exhibits poor accuracy. 

 III. CONCLUSIONS 

In this paper the 3p-IpDFTi algorithm based on the MSD 

windows has been proposed for frequency and damping 

factor estimation of a real-valued noisy damped sinusoid. The 

algorithm compensates the contribution of the spectral image 

component on the returned estimates, so assuring a better 

accuracy than the classical 2p-IpDFT [8],  the Aboutanios [4], 

and the 3p-RVCI-(H-1) [3] algorithms when only few signal 

cycles are analyzed. Due to its implementation simplicity, the 

3p-IpDFTi algorithm is suitable for real-time, fast-response 

damped sinusoid parameter estimation. 

 
(a) 

 
(b) 

Fig. 4. Real-valued noisy harmonically distorted damped 

sinusoids: RMSEs of the frequency  (a) and the damping factor 

 (b) estimates returned by the considered algorithms versus 

the number of analyzed cycles .  Damping factor  = 1, SNR 

= 40 dB, phase at random, and M = 512 samples. 2nd and 3rd 

harmonics with damping factors equal to 1.2 and 1.5 and 

amplitudes equal to 10% and 5% of the fundamental. Hann 

window. 

 

APPENDIX 

PROOF OF THE PROPOSITION 

 

For a noise free signal, by using (3), the interpolation function 

(5) becomes: 

                   ℎ =

𝐻
𝑋̃𝑤(𝑙+1)+𝑋̃𝑖𝑤(𝑙+1)−𝑋̃𝑤(𝑙−1)−𝑋̃𝑖𝑤(𝑙−1)

𝑋̃𝑤(𝑙−1)+𝑋̃𝑖𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)−2𝑋̃𝑖𝑤(𝑙)+𝑋̃𝑤(𝑙+1)+𝑋̃𝑖𝑤(𝑙+1)
=

𝐻
𝑋̃𝑤(𝑙+1)−𝑋̃𝑤(𝑙−1)

𝑋̃𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)+𝑋̃𝑤(𝑙+1)

1+
𝑋̃𝑖𝑤(𝑙+1)−𝑋̃𝑖𝑤(𝑙−1)

𝑋̃𝑤(𝑙+1)−𝑋̃𝑤(𝑙−1)

1+
𝑋̃𝑖𝑤(𝑙−1)−2𝑋̃𝑖𝑤(𝑙)+𝑋̃𝑖𝑤(𝑙+1)

𝑋̃𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)+𝑋̃𝑤(𝑙+1)

.

If enough sinusoid cycles are observed, the contribution of the 

spectral image on the DFT samples is small, and so we have: 
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|
𝑋̃𝑖𝑤(𝑙−1)−2𝑋̃𝑖𝑤(𝑙)+𝑋̃𝑖𝑤(𝑙+1)

𝑋̃𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)+𝑋̃𝑤(𝑙+1)
| ≪ 1. By using the 

approximation (1 + 𝑥)−1 ≅ 1 − 𝑥, when |x| << 1, and 

neglecting the product of spectral image components, (A.1) 

becomes: 

            ℎ ≅ 𝐻
𝑋̃𝑤(𝑙+1)−𝑋̃𝑤(𝑙−1)

𝑋̃𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)+𝑋̃𝑤(𝑙+1)
(1 + 𝜀),

where: 

𝜀 ≅ 1 +
𝑋̃𝑖𝑤(𝑙+1)−𝑋̃𝑖𝑤(𝑙−1)

𝑋̃𝑤(𝑙+1)−𝑋̃𝑤(𝑙−1)
−

𝑋̃𝑖𝑤(𝑙−1)−2𝑋̃𝑖𝑤(𝑙)+𝑋̃𝑖𝑤(𝑙+1)

𝑋̃𝑤(𝑙−1)−2𝑋̃𝑤(𝑙)+𝑋̃𝑤(𝑙+1)
 

From (A.2) and (8) we obtain: 

                   ℎ̂ = 𝛿̂ + 𝑗𝛼̂ = (𝛿 + 𝑗𝛼)(1 + 𝜀).

From which it results: 

                         Δ𝛿 + 𝑗Δ𝛼 = (𝛿 + 𝑗𝛼)𝜀.

From (4a) we achieve:  

𝑋̃𝑖𝑤(𝑙 − 1) ≅
𝛼+𝑗(𝛿+2𝑙)+𝑗(𝐻−1)

𝛼+𝑗(𝛿+2𝑙)−𝑗𝐻
𝑋̃𝑖𝑤(𝑙),                                                                           

       𝑋̃𝑖𝑤(𝑙 + 1) ≅
𝛼+𝑗(𝛿+2𝑙)−𝑗(𝐻−1)

𝛼+𝑗(𝛿+2𝑙)+𝑗𝐻
𝑋̃𝑖𝑤(𝑙).

From (7) and (A.5), after some algebra the expression of  
becomes:  

   𝜀 ≅ 2
𝑗(𝑙+𝛿)

𝛼−𝑗𝛿

(𝛼−𝑗𝛿+𝑗𝐻)(𝛼−𝑗𝛿−𝑗𝐻)

(𝛼+𝑗(𝛿+2𝑙)+𝑗𝐻)(𝛼+𝑗(𝛿+2𝑙)−𝑗𝐻)

𝑋̃𝑖𝑤(𝑙)

𝑋̃𝑤(𝑙)
. 

From (4a) and (4b) it follows: 

𝑋̃𝑖𝑤(𝑙)

𝑋̃𝑤(𝑙)
=

1−𝑒−2𝜋(𝛼+𝑗𝛿)

1−𝑒−2𝜋(𝛼−𝑗𝛿)

𝛼−𝑗𝛿

𝛼+𝑗(𝛿+2𝑙)

∏ [(𝛼−𝑗𝛿)2+ℎ2]𝐻
ℎ=1

∏ [(𝛼+𝑗𝛿+𝑗2𝑙)2+ℎ2]𝐻
ℎ=1

𝑒−𝑗2𝜙

                   (A.7) 

Finally, by replacing (A.6) and (A.7) into (A.4), (10) can be 

achieved. 
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