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ABSTRACT 

Ghannouch in the south-east of Tunisia is 

colonized by halophytes. Mapping and monitoring 

with remote sensing approach are previsioned as 

the ways to trace the spatial 

and temporal confines of their distribution in order 

to reveal the extent of salinization and its dynamic. 

The distinguishing of halophyte vegetation can be 

done by examining optical remote detecting 

information as a tree approach applied to European 

Space Agency Sentinel-2 symbolism. As a result, 

for an area of interest of 50 × 50 km², at least 68% 

was classified as halophyte land cover. This 

mapping exercise represents an important step 

toward improved halophyte mapping in Tunisia 

and could be used to monitor the status of other 

salinity-prone regions in the world. 

Keywords: Salinity indices, Halophyte cover, 

Mapping, Sentinel-2 

1. INTRODUCTION 

The primary target of this examination is to 

decide our findings for accurate halophyte cover 

mapping by using a decision tree algorithm. In 

order to descry and collude the halophyte land 

cover in the area of interest (AOI), we compare a 

selection of 13 Salinity Index (SI), with the end of 

testing and vindicating which one restitutes the 

stylish fit in respect to direct saltness compliances 

on the ground. Climate change causes balance in 

the ecosystem, drought due to the rise of salts to 

the surface, and soil degradation due to intense 

summer evaporation. 

In Tunisia, a semi-arid region, salt-affected 

soils presented 3% of the surface in the south of 

Tunisia (Gabes Oasis) extended over about 900 

hectares. More than 100 ha are affected by 

salinization because of the high salt content of 

irrigation water. This oasis constitutes the proper 

habitat for halophytic vegetation which presents an 

optimal development in salty or very salty 

environments. Other forms affected by salinity are 

Sebkhas, a salt flats area. These ecosystems are 

generally hypersaline environments and crowded 

by halophytes. The study of their distribution is  

 

 

necessary to demonstrate the extent of salinization 

and its dynamics. 

 

2. MATERIAL AND METHODS 

 

The identification and the distribution of 

halophytes in Tunisia are not fully understood and 

not much work is reported in the literature. Thus, 

the limited accessibility and vastness of the south 

of Tunisia allowed the study of halophytes by 

mapping and monitoring reliably with a remote 

sensing approach. The dataset utilized in this study 

comprises two Sentinel-2 scenes (Level 1C) and 

500 focuses on the ground obtained in the AOI, 

which were utilized as reference data to approve 

optical outcomes. 

100 ground focus were considered for each of 

the five cover classes considered. The guide of 

land cover and vegetation type was gathered pixel 

by pixel utilizing Google Earth. This was created 

in 2017 and incorporates five classes, which are 

from now on marked in the text, tables, and figures 

as W, UBS, V, DV, and H and represent, 

respectively, water, urban and bare soil, vegetation, 

dense vegetation, and halophyte vegetation. 

 

 
Figure 1: Google Earth pictorial view. a) The cyan box show the 

selected AOI in Ghannouch, Tunisia, centered at 34° 05’ 44”N, 

9° 54’ 16”E. b) Reference pixel land cover map; land cover 

classes are as follows: ● water; ● urban/bare soil; ● dense 

vegetation; ● vegetation; ● halophytes 

 

The optical information gives symbolism in the 

apparent groups, which encase red (R), green (G), 

and blue (B), in the close infrared (NIR) groups, in 

the short wave infrared groups (SWIR), and in the 
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warm groups (TIR), with a spatial goal equivalent 

to 10, 20, and 60 m for the noticeable and warm 

groups, separately [1]. The optical pictures we used 

are displayed in the noticeable band as misleading 

shading pictures.  

Therefore, by using NDWI (Normalized 

Difference Water Index), NDVI (Normalized 

Difference Vegetation Index), and other remote 

sensing indices, such as the SIs, it is possible to 

map the halophyte vegetation [2,3]. With the 

purpose of classifying and comparing the land 

cover types for the two chosen images, we 

processed Sentinel-2 data by deriving NDWI, 

NDVI, and different SIs. 

Finally, finding halophytic vegetation requires the 

presence of salt affected soils. Thus, various SIs 

were used to recognize and to discriminate the salt 

affected soils. Such indices are especially sensitive 

to sodium chloride in the VIS–SWIR (400–2500 

nm) region [4] and are commonly calculated from 

the spectral reflectance of two or more bands. In 

this study, we tested the sensitivity of 13 SIs 

applied to the Sentinel-2 reflectance image. 

According to [5], the difference image |ΔNDVI| 

= |NDVI08 − NDVI03| was then reclassified using 

a threshold value calculated as σ, where |ΔNDVI| 

represents the NDVI difference in absolute value 

between the two acquisition dates; σ is the standard 

deviation evaluated on the pixels where we are 

sure of vegetation presence (0.075 < NDVIxx < 

0.3; the subscript xx stands for 03 or 08 in 

reference to acquisition sentinel-2 (date March 22, 

2017, and August 29, 2017, respectively). 

In our case, the threshold identifies two ranges 

in the normal distribution: (a) the tail region 

(|ΔNDVI| > μ + n · σ) and (b) the central region of 

the normal distribution (|ΔNDVI| < μ + n · σ). 

Pixels within the tail region of the distribution are 

characterized by significant vegetation changes, 

while pixels in the central region represent no 

change. The n factor defines the range of 

dispersion around the mean. This study considered 

the positive variation as the area of probable 

vegetation, when |ΔNDVI| > μ + nσ, in explicit 

form |ΔNDVI| > 1.96σ. 

3. RESULTS 

The decision tree algorithm based on optical 

indices and the chosen threshold criteria are 

summarized in the flow chart in Figure 2. Each 

criteria consist of a conditional statement. Both 

criteria and threshold are described in the order they 

enter in the decision tree. Every time a condition is 

fulfilled, the resulting class/binary map is excluded 

from the area of a potential halophyte, resulting in a 

final map of suitable areas for halophyte cover. In 

the final decision tree, we included four variables, 

which we consider as the most efficient in excluding 

areas not suitable for the halophyte cover. 

Here, the steps we followed along the decision tree 

are scheduled:  

• Water and urban/bare soil were delineated using 

the NDWIxx algorithm, with a threshold of 0 

(water or urban/bare soil); 

• Vegetation and urban/bare soil were mapped using 

NDVIxx and |ΔNDVI| with a threshold of 0.075 

and 1.96σ, respectively; 

• Dense vegetation and urban/bare soil were 

delineated using NDVIxx with a threshold of 0.3 

and 1.96σ, respectively; 

• Vegetation on saline soil or vegetation on not 

saline soil was delineated using NDVIxx with a 

threshold of 0.075 ÷ 0.3 and SIs with a threshold 

SImin. 

 

 
Figure 2: The decision tree based on indices criteria and 

thresholds 

 

To assess the performance of the estimations, 

the recaptured classes were compared with the 

reference land cover chart. A confusion matrix was 

constructed in order to prize four well- accepted 

parameters for the evaluation of the bracket 

procedures(1) overall accuracy (OA),(2) user 

accuracy ( UA),( 3) producer accuracy ( PA), 

and( 4) kappa( K) measure The OA, PA, and UA 

are usually expressed as a percent [6]. OA is 

calculated by summing the number of correctly 

classified values and dividing by the total number 

of values. PA is the probability that a value 

predicted to be in a certain class really is in that 

class. UA is the probability that a value in a given 

class was classified correctly. K coefficient was 

generated from a statistical test to evaluate the 

accuracy of classification. K measures the 

agreement between classification and ground truth 
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pixels. A K value of 1 represents a perfect 

agreement, while a value of 0 represents no 

agreement at all. Moreover, the land cover area 

percentage for each class in AOI was evaluated. 

The estimated features together with three main 

classification outputs resulting by applying the 

decision tree methodology  

The comparison between NDVI03 and NDVI08 

clearly demonstrates an increased vegetation 

activity in spring (Marsh) as compared to summer 

(August).  

 

 
Figure 3: Halophyte cover map relative to SI selector: a SI1, 

b SI9. Land cover classes: W: water; UBS: urban and bare 

soil, DV: dense vegetation; V: vegetation; H: halophyte. 

 

Finally, concerning the main aim to classify 

halophyte vegetation, the results reported in Table 

1 for SI1 show that 86% of the halophyte areas 

have been correctly identified as halophyte land 

covers. Particularly, more than 73.5% of the areas 

called halophyte correspond actually to halophyte 

vegetation cover, while the 14% of halophyte areas 

were mistakenly classified as urban/bare soil (11%) 

and vegetation (3%). 

Table 1: Confusion matrix related experiment SI1. Columns 

represent true classes, while rows represent the classifier’s 

predictions. The matrix is square, with all correct 

classifications along the upper-left to lower-right diagonal.  

 

The confusion matrix, relevant to all SI features, is 

shown in Table 1, where also UA, PA, OA, and K 

are listed, while the land cover percentage for each 

class is shown in Table 2. Note that the entries in 

Table 1 are descending-ordered according to their 

H. The confusion matrix shows that: a) UA and PA 

for W, UBS, and V show the same value for all 

features; b) UA estimates were higher than 73.1% 

per class. c) PA estimates were higher than 86% 

per class. d) OA for all the features is larger than 

91%; e) K value for all the features is considered 

B almost perfect because in according to [7] is 

between 0.81 and 1. 

Table 2: UA, PA, OA, and K related experiment. Features are 

listed in descending order according to their OA 

 

Table3: Land cover area percentage related experiment 

Features are listed in descending order according to their H  

 

The classification results show that the decision 

tree algorithm applied to the integrated layer stack 

composed of Sentinel-2 VNIR based on SI6, SI7, 

SI8, SI9, SI10, and SI12 data outperformed the 

other configurations of classifiers: the halophyte 

cover percentage showed in Table 3 was higher 

than 50% of irrigated land. We were more 

confident about the low value of halophytes land 

cover (around 66%), thus we discuss here detailed 

results only from this classification approach. A 

visual inspection of the decision tree classification 

maps versus a digital elevation model (DEM) of 

our AOI shows that: 

a) The main percentage of UBS class represents 

the main percentage of cover of AOI. This matches 

the results from the digital elevation model (DEM) 

b) The eastern part of the study area is more 

heterogeneous and characterized by a mosaic of 

the four classes UBS, V, and H.  

c) The major concentration of H falls in the 

northeast and in the south of the AOI. This result 

is in agreement to [8]. They reported that the 

spatial distributions of electric conductivity, total 

dissolved salts, and major ions are rather similar. 

Moreover, they showed an increase in salinity 

from the mountainous regions (defined as recharge 

areas) toward the depressed Sabkhas areas. 
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Finally, concerning the main aim to classify 

halophyte vegetation, the results reported in Table 

2 for SI1 show that 86% of the halophyte areas 

have been correctly identified as halophyte land 

covers. Particularly, more than 73.5% of the areas 

called halophyte correspond actually to halophyte 

vegetation cover, while 14% of halophyte areas 

were mistakenly classified as urban/bare soil 

(11%) and vegetation (3%) (see Table 1). Thus, the 

critical point in this land cover analysis is 

represented by the discrimination between 

urban/bare soils and halophyte areas. 

Figure 4: Halophyte cover map relative to SI selector: a SI1, 

b SI9, and c SI12. Land cover classes: W: water; UBS: urban 

and bare soil, DV: dense vegetation; V: vegetation; H: 

halophyte. 

 

In this study, the sensitivity of SI features to 

halophyte vegetation cover is investigated using 

Sentinel-2 scenes collected over the territory of 

Ghannouch delegation, Tunisia. A simple decision 

tree was used to analyze the classification 

performance of each feature against a reference 

land cover map. The decision tree classification 

produced satisfactory accuracy results for all the 

classes considered. 

4. CONCLUSION 

This study is based on a multi-source methodology 

using remote sensing, spectral indices, 

physicochemical analysis, and a solid knowledge 

of the environment to verify the accuracy of the 

results of the classification of halophytes.  

 

 

 

 

 

 

 

 

 

The Tunisian south is a favorable environment for 

the evolution of halophytes. Salinity indices play a 

key role in improving classification performance. 

The IS1 index provides the best results in terms of 

overall accuracy in the Ghannouch area. The 

implementation of appropriate decision tree 

procedures, based on environmental indices, is a 

method for the accurate monitoring of the 

distribution of vegetation.  
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