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Abstract – From basics of Fabry-Perot (FP) resonator 

and roundtrip phase, a complete working equation for 

a FP cavity based optical pressure standard (OPS) is 

derived and presented which includes corrections of 

reflection phase-shift, diffraction and pressure-induced 

distortion. The correction from diffraction, i.e. Gouy 

phase, is negligible. To operate an OPS as a primary 

standard, two unknown parameters, i.e. mirror 

dispersion coefficient 𝝐𝜶  and pressure distortion 

coefficient 𝒅𝒎 , in the working equation should be 

determined independently. Methods to determine 𝝐𝜶 

and 𝒅𝒎  are described and applied to an OPS 

developed at the National Institute of Metrology (NIM), 

China. Thermodynamic effect observed in the 

determination of 𝒅𝒎 is also discussed. 

 I. INTRODUCTION 

A Fabry-Perot (FP) cavity based optical pressure 

standard (OPS) is very promising to be the next generation 

primary standard covering the range from 1 Pa to 1 MPa, 

due to its high accuracy and universality [1-7]. To operate 

an OPS at the highest level of accuracy, a consensus should 

be achieved on its working equation, which converts the 

measurand of frequency and temperature to the pressure. 

The resonance condition in a FP cavity can be described 

by the concept of roundtrip phase and integer half-

wavelengths. The accurate description should take into 

account the physics at the mirror reflection, which can be 

described using the reflection phase-shift or penetration 

depth. However, use of a penetration depth in FP frequency 

metrology is a tricky undertaking [8, 9]. This article 

presents a complete working equation for an OPS derived 

from the basics of FP resonator and roundtrip phase, which 

includes corrections of reflection phase-shift and Gouy 

phase, i.e. the effect of diffraction in Gaussian optics. In 

addition, the working equation accounts for pressure-

induced distortion, which is the major correction. For the 

reflection phase-shift, two types of dielectric-stack mirrors 

are considered, i.e. the so-called type-H and type-L. The 

dependence of reflection phase-shift on frequency causes 

an error when the resonant frequency changes. Hence this 

effect is also called as mirror dispersion. The diffraction 

effect is expressed by adding a Gouy phase component to 

the roundtrip phase. The Gouy phase is affected by the 

refractive index of gas on the path of laser beam, hence it 

causes an error if it is neglected. 

To operate an OPS as a primary standard, all unknown 

parameters in the working equation should be determined 

independently, i.e. without reference to other pressure 

standard. Methods to determine the mirror dispersion 

coefficient and pressure distortion coefficient are 

described in this article. The application of the methods to 

an OPS developed at the National Institute of Metrology 

(NIM) [4] is also presented. 

 II. WORKING EQUATION 

Resonance condition for a two-mirror FP cavity which 

accounts for the reflection phase-shift 𝜙R and the Gouy 

phase 𝜙G due to diffraction is: 

2𝜋𝑚 =
4𝜋𝐿

𝑐
𝑛𝜈 + 2𝜙R − 2𝜙G . (1) 

Here, 𝑚 is the integer mode number, 𝐿 is the separation 

between the front faces of the mirrors, 𝑐 is the speed of 

light in vacuum, 𝑛 is the refractive index of the medium 

between the mirrors and 𝜈 is the optical frequency. 

𝜙R is dependent on the frequency 𝜈 by a coefficient 𝛼, 

and is expressed as: 

𝜙R = 𝜙0 + 𝛼(𝜈 − 𝜈des) . (2) 

The fundamental requirement that 𝜙R is signed such that 

it adds to roundtrip phase is emphasized (refection occurs 

inside the mirror stack). Here, 𝜙0 is the phase-shift at the 

design frequency 𝜈des of the mirrors, and equals π or 0 

depending on whether a high- or low-index layer, 

respectively, faces the incident laser. As one operates away 

from 𝜈des , the 𝜙R(𝜈)  dependence is captured by 𝛼 =
𝑑𝜙 𝑑𝜈⁄ . The mirror phase response 𝛼  is customarily 

specified with vacuum as the incident medium, but it 

depends on refractive index of the medium in front of the 

dielectric stacks [8, 9]. A type-H quarterwave stack mirror 

has the high-index layer facing the incident laser, and 

𝛼gas = 𝑛𝛼. A type-L mirror has the low-index layer facing 

the incident laser, and 𝛼gas =
1

𝑛
𝛼 ≈ (2 − 𝑛)𝛼 when 𝑛 −

1 ≪ 1. The type-H and type-L mirrors are schematically 

illustrated in Fig. 1. 
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Fig. 1. Schematic drawings of the type-H and type-L 

mirrors. 

It is pointed out that 𝜙0 is independent of gas in front 

of the stack. Fresnel equations govern that any pair of 

reflecting surfaces with complex reflection coefficients 𝑟1 

(a real number here) and 𝑟2𝑒
𝑖𝜃  can be treated as a single 

equivalent reflecting surface at the location of the first 

reflection. The reflecting pair have an equivalent reflection 

coefficient 

𝑟eq =
−𝑟1+𝑒

𝑖𝜑𝑟2𝑒
𝑖𝜃

1−𝑒𝑖𝜑𝑟1𝑟2𝑒
𝑖𝜃  . (3) 

As written, the formula assumes no losses, and 𝜑 is the 

roundtrip phase-shift of light passing through the first 

dielectric layer. The amplitude reflection coefficient at the 

first surface is given by the usual Fresnel formula 𝑟1 =
(𝑛 − 𝑛1) (𝑛 + 𝑛1)⁄ , where 𝑛 is the refractive index of the 

gas and 𝑛1 is the refractive index of the first di-electric 

layer. The amplitude coefficient 𝑟1 will change as gas is 

admitted (because 𝑛  changes), but it is always a real 

number if a lossless media is assumed with real refractive 

indices. If 𝜑 + 𝜃 is 0 or a multiple of π, the expression 

for 𝑟eq is real. Note that the only value in equation (3) that 

changes when gas is added is 𝑟1 . Consequently, 𝑟eq 

remains real even though 𝑟1 changes, and in this case the 

phase-shift does not change when gas is added; it is 

entirely independent of changes in the first surface 

reflection. Alternatively stated, at the design frequency, 

𝜙R is exactly 0 or π-multiple, and has no dependence on 

gas in front of the mirror. As one moves away from the 

design frequency, deviations from 𝜙0  are indeed 

denpendent on 𝑛, and this is accounted for via 𝛼gas = 𝑛𝛼 

or 𝛼gas = (2 − 𝑛)𝛼 , for the case of type-H and type-L 

mirrors, respectively. 

The Gouy phase-shift of a Gaussian beam changes as a 

function of refractive index, which is 

arctan[𝑧𝜆vac (𝜋𝑛𝑤0
2)⁄ ] , with 𝜆vac  the vacuum-

wavelength, 𝑤0 the beam waist, and 𝑧 the propagation 

distance in a medium of refractive index 𝑛  [10]. In 

Gaussian optics, the Rayleigh range is defined as 𝑧R =
𝜋𝑛𝑤0

2

𝜆vac
. Clearly, the Gouy phase-shift depends on refractive 

index, which at first-order looks like 𝜙G_gas ≈
1

𝑛
𝜙G_vac . 

An approximate derivation for a FP cavity refractometer 

could proceed with 𝜙G_gas ≈ (2 − 𝑛)𝜙G_vac, but it relies 

on small angles and 𝐿 ≪ 𝑅. For some cavities in which 
𝐿

𝑅
→ 1, the approximation would produce estimates of the 

Gouy phase effect incorrect by a factor of 4. The estimate 

can be refined as follows.  

When the input laser is mode-matched to a plano-

concave FP cavity of length 𝐿, the cavity mode has 𝑅 =

𝐿 +
𝑧R
2

𝐿
, so 𝑧R =√(𝑅 − 𝐿)𝐿 . From the definition of 

Rayleigh range above, 𝑧R  is proportional to refractive 

index, so 𝑧R_gas = 𝑛𝑧R. Recall the Gouy phase 𝜙(𝑧) =

tan−1 (
𝑧

𝑧R
), so when mode-matched in vacuum 𝜙G_vac =

tan−1 (√
𝐿

𝑅−𝐿
), and in gas 𝜙G_gas = tan−1 (

1

𝑛
√

𝐿

𝑅−𝐿
). The 

Taylor expansion for tan−1 (
1

𝑛
√

𝐿

𝑅−𝐿
) about the nominal 

phase √
𝐿

𝑅−𝐿
 is 

tan−1 (
1

𝑛
√

𝐿

𝑅−𝐿
) = tan−1 (√

𝐿

𝑅−𝐿
) +

1

𝑛
√

𝐿

𝑅−𝐿
−√

𝐿

𝑅−𝐿

1+
𝐿

𝑅−𝐿

+⋯ , 

so the difference in Gouy phase between gas and vacuum 

conditions is 

𝜙G_gas − 𝜙G_vac =
√

𝐿

𝑅−𝐿
(
1

𝑛
−1)

1+
𝐿

𝑅−𝐿

 , 

and using 
1

𝑛
≈ 2 − 𝑛, 𝜙G_gas = 𝜙G_vac − (𝑛 − 1)

𝑧R

𝑅
. 

From the basic statement of equation (1), the resonance 

frequency at vacuum can be written as 

𝜈vac =
𝑐

2𝐿+𝛼𝑐 𝜋⁄
(𝑚 −

𝜙0−𝛼𝜈des

𝜋
+

𝜙G_vac

𝜋
) , (4) 

and with gas inside the cavity (ignoring the compression 

of 𝐿 here) 

𝜈gas =
𝑐

2𝑛𝐿+𝛼gas𝑐 𝜋⁄
(𝑚 + Δ𝑚 −

𝜙0−𝛼gas𝜈des

𝜋
+

𝜙G_gas

𝜋
) . 

(5) 

With the parameter 𝜖𝛼 =
𝛼𝑐

2𝜋𝐿
, subtracting equation (5) 

from equation (4) and solving for refractivity yields, for 

the type-H mirror: 

𝑛 − 1 =
(𝜈vac−𝜈gas)(1+𝜖𝛼)+Δ𝑚

𝑐

2𝐿

𝜈gas+𝜖𝛼(𝜈gas−𝜈des)+
𝑐

2𝜋𝐿
√
𝐿

𝑅

 , (6) 

and for the type-L mirror: 

𝑛 − 1 =
(𝜈vac−𝜈gas)(1+𝜖𝛼)+Δ𝑚

𝑐

2𝐿

𝜈gas−𝜖𝛼(𝜈gas−𝜈des)+
𝑐

2𝜋𝐿
√
𝐿

𝑅

 . (7) 

E.g., for 𝐿 = 10cm , 𝑅 = 50cm , 𝜖𝛼 ≈ 7.5 × 10−6 , 

(𝜈gas − 𝜈des) < 10THz  and 𝜈gas = 474THz  (633 nm 
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wavelength), neglecting the second and third terms in the 

denominator would cause errors < 0.2 parts per million 

(ppm) and < 0.5  ppm, respectively. For targeting 

pressure uncertainty of 10 ppm (k=2), these two terms can 

be ignored, and equation (6) and (7) are essentially the 

same no matter what type of the dielectric-stack mirror is. 

Furthermore, the generalization of equation (6) and (7) is 

enabled by 𝜖𝛼, the so-called mirror dispersion coefficient, 

which is proportional to 𝛼 and reversely proportional to 

the cavity length 𝐿. Hence the mirror dispersion is an end-

effect. For a cavity length of 100 mm, this correction for 

𝑛 − 1, then pressure, is at the level of 10 ppm. The phase 

response 𝛼 must be determined for any specific dielectric 

stack. For quarterwave stacks in general, 𝛼 is about three 

times larger for a type-L mirror compared to a type-H 

mirror. 

Considering the compression of 𝐿  induced by a 

pressure 𝑝, the left term of equation (6) and (7) turns to be 

𝑛 − 1 − 𝑛𝑑𝑚𝑝, with 𝑑𝑚  as the distortion coefficient of 

the cavity. Finally, the equation below applies. 

𝑛 − 1 − 𝑛𝑑𝑚𝑝 =
(𝜈vac−𝜈gas)(1+𝜖𝛼)+Δ𝑚

𝑐

2𝐿

𝜈gas
 . (8) 

Equation (8) is the final expression. To use it, one must 

determine 𝐿  using an absolute resonance frequency, 

together with knowledge of reflection and Gouy phase-

shifts. Alternatively, 
𝑐

2𝐿
 is related to the free spectral 

range (FSR=𝜈fsr), which can be measured conveniently. 

From equation (4), we have 𝜈fsr =
𝑐

2𝐿+𝛼𝑐 𝜋⁄
=

𝑐

2𝐿(1+𝜖𝛼)
. 

Hence, equation (8) can be written as: 

𝑛 − 1 − 𝑛𝑑𝑚𝑝 =
𝜈vac−𝜈gas+Δ𝑚𝜈fsr

𝜈gas
(1 + 𝜖𝛼) . (9) 

Based on equation (9), the Lorentz-Lorenz equation and 

the equation of state, the working equation to calculate 

pressure can be obtained, as has been used in Ref. [3] and 

[4]. 

 III. EXPERIMENTAL DETERMINATION OF 𝜖𝛼 AND 

𝑑𝑚 

There are two unknown parameters in equation (9), i.e. 

the mirror dispersion coefficient 𝜖𝛼  and pressure 

distortion coefficient 𝑑𝑚 , which should be determined 

independently to make the OPS working as a primary 

pressure standard. 

 A. Mirror dispersion coefficient 𝜖𝛼 

The 𝜖𝛼  can be calculated using the mirror coating 

information provided by the manufacturer. Moreover, it 

can be validated, and its accuracy improved by in-situ 

measurements of 𝜈fsr and absolute resonance frequency 

of the cavity [11]. The approach is to deduce a mode 

number of resonance with accuracy of ~ 0.1. The fraction 

in the mode number is a result of the reflection phase-shift 

and Gouy phase. Equation (4) is equivalent to: 

𝜈vac = 𝜈fsr (𝑚 −
𝜙0−𝛼𝜈des

𝜋
+

𝜙G_vac

𝜋
) . (10) 

Obviously, the ratio 𝜈vac 𝜈fsr⁄  is not an integer but with a 

decimal equal to 
𝛼𝜈des

𝜋
+

𝜙G_vac

𝜋
. 

 

Fig. 2. Results of FSR measurements for the measurement 

cavity of the NIM OPS.  

For the NIM OPS [4], the FSR of the measurement 

cavity was measured at vacuum by locking the laser 

frequency to two adjacent modes back and forth repeatedly, 

and the difference of its beat to the reference cavity was 

logged. The measurements were fully automated. Over 

2000 data points were recorded as shown in Fig. 2. Taking 

the average and the statistic standard deviation of the data, 

𝜈fsr  was determined to be 1480293.1±1.2 kHz. The 

absolute frequency of one of the mode 𝜈vac was measured 

by linking it to an iodine stabilized helium-neon laser. 

Then the ratio 𝜈vac 𝜈fsr⁄  is calculated to be 

319945.41±0.26. With the measured ratio, we have: 

𝛼𝜈des

𝜋
+

𝜙G_vac

𝜋
= 𝑘 + 0.41 ± 0.26 . (11) 

where 𝑘 is an unknown integer. The Gouy phase is 

calculated to be 𝜙G_vac = arcsin (√𝐿 𝑅⁄ ) = 0.46 , with 

𝐿 = 10cm and 𝑅 = 50cm. It can be also determined by 

in-situ measurements using the astigmatic method [12], 

which is to slightly misalign the laser beam in order to 

excite transverse modes of higher order. With 𝜈des =
474THz, we obtained: 

𝛼 = 0.663 × (𝑘 + 0.26 ± 0.26) × 10−14rad/
Hz . 

(12) 

The manufacturer provided a value of 1.3129 ×
10−14rad/Hz  without uncertainty information. Hence, 

𝑘  is most probably to be 2. Based on this, 𝛼 =
(1.50 ± 0.17) × 10−14rad/Hz, and 𝜖𝛼 = (7.1 ± 0.8) ×
10−6. 

 B. Pressure distortion coefficient 𝑑𝑚 

The pressure distortion coefficient 𝑑𝑚  can be 

determined by the so-called two-gas method [13]. It is to 

compare the pressure measurements at a same pressure 

usually generated by a piston gauge (PG), with two gases 

of very different and known refractive indices, 
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respectively. Comparisons with PG measurements were 

done using nitrogen and helium at 80 kPa. 

A preliminary 𝑑𝑚  value was obtained by calibrating 

the OPS against a PG [4]. The preliminary 𝑑𝑚  used in 

this article is 9.892×10-12 Pa-1, which was adjusted from 

the value in Ref. [4] with the updated 𝜖𝛼 determined in 

this work. With this 𝑑𝑚 value, the pressure differences of 

PG to OPS were plotted versus time. Figure 3 and 6 show 

the plots for nitrogen and helium, respectively. 

 

Fig. 3. Comparison of pressure between PG and OPS 

with preliminary 𝑑𝑚 value using nitrogen at 80 kPa.  

A fast rising can be seen in Fig. 3 at the beginning time. 

This indicates a thermodynamic process, during which the 

temperature of gas in the cavity mode was lower than the 

temperature measured by the standard platinum resistance 

thermometers (SPRT) located at the copper chamber 

housing the FP cavity, and the gas was heated up. The 

colder cavity at beginning was due to the heat-island effect 

and leak of heat. Before filling gas for pressure 

measurements, the copper chamber was turbo-pumped for 

over 12 h to minimize the outgassing effect. The FP cavity 

lost thermal connection to the copper chamber, and 

became colder because of heat leak. 

The cavity was estimated to be ~ 58 mK colder than the 

copper chamber just before the gas filling. The estimation 

was based on the cavity baseline shift observed. With this 

initial condition, finite element analysis (FEA) was used to 

simulate the thermodynamic process after the gas filling. 

Figure 4 shows the temperature contour of the copper 

chamber and the FP cavity at the time of 600 s after 

nitrogen filling. The maximum temperature gradient is ~ 

35 mK. The time of 600 s is the typical starting time for 

pressure comparison measurements. The temperature 

difference between the gas in the mode and the SPRT 

causes pressure errors of the OPS. Figure 5 shows the 

difference of temperature between the mode and SPRT 

over 6 h. After 2 h, the difference is within 0.5 mK, 

corresponding to pressure error less than 1.6 ppm. 

As shown in Fig. 3, the pressure difference went to a 

process of slow drift after 1 h. The drift was mainly 

attributed to the outgassing of water vapor [14]. The 

intrinsic pressure difference between the PG and OPS is 

deduced by fitting the slow drift part with an exponential 

decay function and extrapolating to the starting time of gas 

filling. To minimize the influence of temperature gradient, 

the data for fitting was selected after 2.1 h. The fitting 

results were shown in Fig. 3. The disagreement between 

the OPS and PG is only 0.08 Pa at nitrogen pressure of 80 

kPa, i.e. 1 ppm. This result was expected, since the 

preliminary 𝑑𝑚  value used was calibrated by the PG 

using nitrogen. 

 

Fig. 4. Temperature contour of the copper chamber and 

the FP cavity at 600 s after filling of nitrogen.  

 

Fig. 5. Temperature difference between the gas in the 

cavity mode and the SPRT versus time.  

The same measurement procedure was applied for 

helium, and the results were shown in Fig. 6. The trend 

shown in Fig. 6 is dominated by the helium diffusion into 

the cavity (ULE glass) [15, 16] and the outgassing, and the 

drift is much more remarkable than in the case of nitrogen. 

The thermodynamic process was not observed because its 

effect was minor compared to the drift, also the much 

higher thermal conductivity of helium than nitrogen 

shortened the thermo-equilibrium time. 

The fitting results showed a disagreement of 34.84 Pa, 

i.e. 436 ppm at 80 kPa, between the OPS and PG. We can 

adjust the 𝑑𝑚 value until the disagreements for nitrogen 

and helium are identical. This is the way to determine 𝑑𝑚 

without reference to the PG pressure. However, if we trust 

the helium result, the OPS would differ to the PG by 54 

ppm. This is unlikely since the PG is a primary pressure 

standard at NIM and has obtained an equivalence of ~ 10 

ppm in the international comparison of CCM.P-K6 [17]. 

At this stage, the purity of the helium needs to be checked 
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further, before utilizing the so-called two-gas method to 

determine 𝑑𝑚. 

 

Fig. 6. Comparison of pressure between PG and OPS 

with preliminary 𝑑𝑚 value using helium at 80 kPa.  

 IV. SUMMARY AND DISCUSSIONS 

This article presented a derivation of equation for a FP 

refractometer with the consideration of reflection phase-

shift, Gouy phase and pressure-induced distortion. The 

equation is a basis of the working equation for the OPS, as 

has been used in Ref. [3] and [4]. Approaches to 

experimentally determine two parameters in the working 

equation, 𝜖𝛼 and 𝑑𝑚, are introduced and applied to the 

NIM OPS. The working equation and the methods to 

determine 𝜖𝛼 and 𝑑𝑚 are the basis to operate the OPS as 

a primary pressure standard. 

The ultimate accuracy of an OPS is dependent on how 

well the dynamic polarizability of a second kind of gas 

except helium at the given optical frequency is determined. 

At present, the best achieved uncertainties by optical 

measurements are 7.3 ppm (k=2) for nitrogen [3] and 16 

ppm (k=1) for argon [18]. Recently, the polarizability of 

argon was reported with accuracy of ~ 10 ppm (k=1), 

which was based on measurement of static polarizability 

scaled in frequency with dispersion coefficients from 

theoretical calculations [19]. Further reducing the 

uncertainties is the subject of current research. 

Nevertheless, if same reference values of polarizabilities 

are used, the consistency of OPSs built in different labs 

should agree within the ability to assess and/or control the 

gas temperature. From this point of view, OPSs are 

expected to outperform established standards. To validate 

this, an international comparison of the OPS at the highest 

level of accuracy is needed. 
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 VI. APPENDIX: OPTIMIZED THERMAL DESIGN 

Figure 5 discussed a key problem in an optical pressure 

standard: the temperature of the gas 𝑇 interacting with 

the interferometer mode (the laser beam) must be known 

in the realization 𝑝 =
2𝑅

3𝐴𝑅
(𝑛 − 1)𝑇 +⋯, with 𝑅 the gas 

constant and 𝐴𝑅  the molar polarizability of the gas. 

Traditional “contact thermometry” employs a resistance 

thermometer to sense the temperature of a body. In the case 

of Fig. 4, the resistance thermometer is embedded in the 

copper chamber, and is therefore separate in space from 

the laser beam. This setup risks undetected gradients, and 

inevitably leads to a settling-time needed before an optical 

pressure can be sampled after a gas fill. The settling-time 

is how long it takes the temperature gradient between the 

resistance thermometer and laser beam to approach zero. 

In general, short settling-times are preferred, because they 

allow fast measurement of pressure. As a desirability 

guideline for “fast”, a traditional piston-gage will generate 

a known pressure within a few minutes of a gas fill. 

Here is briefly mentioned a meta-analysis for settling-

times of several extant optical pressure standards. The 

comparison is shown graphically in Fig 7. Evidently, the 

system discussed in the main text (Ref. [4]) takes about 

6,000 s for the gradient between the resistance 

thermometer 𝑇sprt  and the interferometer mode 𝑇mode 

to approach 0.1 mK. An error of 0.1 mK in the estimated 

temperature of the interferometer mode corresponds to an 

error of 0.3 μPa/Pa in an optical pressure standard. 

 

Fig. 7. Meta-analysis of thermal settling-times for several 

extant optical pressure standards. The thermal load for 

all cases is the pV-work caused by a 100 kPa fill of argon 

gas.  

Significantly improved performance over Ref. [4] can be 

achieved with one small design modification: by having 

the lid of the copper chamber enclose both the 

thermometer (cSPRT) and the laser beam (cavity mode). 

A general sketch of how this might look is shown in Fig. 

8. The gas volume in the chamber is only 7.5 mL, a factor 

of 3.4 smaller than Ref. [4]. Simulated performance of this 

sketched system is labeled as “optimized” in Fig 7. The 

gradients between the thermometer and the interferometer 

mode reach 0.1 mK within 500 s, more than an order of 
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magnitude faster than Ref. [4]. As a comparison of thermal 

disturbance, the maximum-gradient between the 

thermometer and interferometer mode is 38 times less than 

Ref. [4]. Remarkably, the optimized system would enable 

3μPa/Pa accuracy in the optical pressure for sampling 

times as short as 10 s.  

 

Fig. 8. General sketch of an optimtimized thermal design. 
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