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Abstract – 

 

In the Oil & Gas Industry, large fleets of centrifugal 

pumps are used for different services working in 

diverse process conditions. More specifically in oil 

refineries, they have many characteristics in common 

since they are centrifugal machines that handle liquids 

using the same operating principle and because their 

design is highly standardized by API 610/ISO 13709 std 

for centrifugal pumps and API 682 std for sealing 

systems. As well, operating units and refining processes 

are well known and do not differ much regardless of 

where they are installed. 

Due to their criticality in the refining process, the 

reliability of these assets is of the utmost importance, 

being the MTBF (Mean Time Between Failures) one of 

the most used KPI (Key Performance Indicator) for 

evaluating it. 

Considering the characteristics indicated above, the 

possibility of predicting the MTBF of centrifugal 

pumps based on historical failure data, design features 

and expected operating conditions with Cox 

Proportional Hazards Model (PHM) is suggested. 

 

Keywords – Centrifugal pumps, MTBF, API standard, 

Reliability prediction, Proportional Hazards Model, 

*Industry, Innovation, and Infrastructure. 

 

 I. INTRODUCTION 

Centrifugal pumps are characterised by the simplicity of 

their design, providing reasonable efficiencies, and 

covering a wide range of pressures, as well as being 

suitable for applications that require handling of liquid 

with reasonable amounts of solids. In the case of oil 

refineries, centrifugal pumps are often duplicated (to 

ensure full plant availability) and handles hazardous 

products, both in terms of their flammability and potential 

harmful effects on the environment and human health. 

To ensure plant availability and due to the potential 

industrial accidents and high costs in lost profit that certain 

failures entail, industrial plants establish complete 

maintenance plans in their different modalities, as 

required, creating as well interdisciplinary groups that are 

continuously dedicated to the improvement and 

maximisation of the asset’s reliability and integrity. Tools 

such as RCA, FMECA and others, as well as the most 

advanced failure detection and diagnosis techniques are 

widely implemented in this industry. [1] 

In recent years, the development of Industry 4.0 in the Oil 

& Gas Industry (a review is available in [2] by Lu H. et al.) 

has led to the deployment of new field sensors and the 

development of algorithms that are used for fault diagnosis 

and Remaining Useful Life (RUL) determination to reduce 

failures and unwanted incidents. These algorithms use 

certain design features of the equipment, on-line operation 

data (available in the distributed control system) and 

vibration data (e.g. from new wireless sensors installed for 

this purpose). 

To model failure progression, there are three basic ways: 

using symbols, data or mathematical equations based on 

physical principles. [3] See Fig. 1. 

 

 

Fig. 1. Diagnosis y Prognosis Approaches [3] 

The prognosis algorithms for machinery reliability have 

evolved in recent years, in [4] Soualhi A. et al. provide a 

survey of the implementation of prognostic methods for 

monitoring industrial systems, Mishra M. et al. in [3] 

summarise the various technologies that can be used for 

machinery diagnosis and prognosis in rotating equipment 

while McKee, K.K. et al. in [5] show a review of the state 
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of the art in diagnosis and prognosis applied to centrifugal 

pumps. In the area of artificial intelligence, Aliyu, R. et al. 

in [6] develop a detailed study of the advances in AI-based 

system health management applied to pumps in the Oil & 

Gas industry. 

The above-mentioned models are designed to detect 

specific failures and to determine the RUL of the 

equipment using data collected from on-line systems. The 

goal of these algorithms is to prevent failures either by 

modifying plant operating conditions or by anticipating 

maintenance tasks by diagnosing specific failures (for 

which vibration analysis techniques are needed) and 

predicting as accurately as possible the RUL. The resulting 

RUL is time-varying and depends on the health of the 

machine and its operating conditions thus allowing to 

make the most appropriate decisions according to the 

context. Examples of this type of algorithms applied to 

centrifugal pumps can be found in the literature, which 

seek to anticipate the most common failures or adverse 

working conditions in centrifugal pumps, e.g. bearing 

failures, cavitation, unbalance, misalignment, etc. The 

literature contains many examples of proposals for RUL 

prediction of components applied to centrifugal pumps, 

some of which can be found in [7-18]. 

On the other hand, Li X. et al. in [19] analyse the prognosis 

techniques of rotating equipment using system-level 

models, the purpose in this case is the prediction of the 

RUL at a system level. Examples of proposals in this 

direction, also applied to centrifugal pumps, can be found 

in [20-28]. Finally, a review of the statistical methods 

applied to the estimation of RUL of assets is presented in 

[29], which is a good guide to know the different existing 

methods and the literature published on this subject. 

Despite the progress in determining the RUL of individual 

components as well as of the complete system (e.g. 

pumps), it is still difficult to determine the expected 

lifetime of a centrifugal pump both when it is 

commissioned or when it is started up after successive 

repairs during its lifetime. To know the maximum expected 

life of a pump can be useful for planning maintenance 

actions, calculating expected equipment operating costs, 

setting KPI's in line with the actual fleet or for improving 

the design of equipment that has a low MTBF (Mean Time 

Between Failures) and greater economic or safety impact. 

For this purpose, empirical MTBF data can currently be 

found in OREDA [30], books [31] or specialised journals, 

but to extrapolate these data to a specific industrial 

complex implies making a series of assumptions (design, 

operating conditions, data quality, etc.) that are difficult to 

assume if accurate results are required.  

The main objectives of the research are to predict the 

expected MTBF of API centrifugal pumps installed in 

refineries and to determine how the design and operating 

variables affect the expected useful life of API centrifugal 

pumps. Maintenance would be better planned, indicators 

and targets could be set according to the installed fleet, and 

upgrades to the equipment could be easily addressed and 

justified, thus achieving higher reliability. For these 

purposes, the use of a Cox Proportional Hazards model is 

proposed, applied to an 8-year data set from a Spanish oil 

refinery. 

 

II. COX PHM FOR MODELING RELABILITY 

 

Cox PHM belongs to a set of methods called Survival 

Analysis. Such analysis comprises a number of statistical 

methods used to estimate time to event for a group of 

individuals, to compare time to event between two or more 

groups and to assess the relationship between the 

explanatory variables (covariates) and time to event. These 

methods can handle right censoring and assess time to a 

certain event and some examples of them are Kaplan-

Meyer (descriptive), Logrank/Wilcoxon test (hypothesis 

test), exponential/Weibull (parametric) and Cox regression 

(semiparametric). An excellent self-learning text of 

survival analysis is [32] and it has good explanations and 

applied examples that can be used as a guide. 

 A. Brief description of Cox PHM Models 

In early 70’s David Cox first proposed the PHM to 

characterize the effect of different variables on the survival 

time or time to failure. First, these models were used in the 

biomedical research to predict the survival of individuals, 

but they are also used in reliability modelling of industrial 

equipment.  

In a basic form, the Cox model for the failure rate h(t, Zt) 

in a certain time t, can be represented as follows (1): 

 

            ℎ(𝑡, 𝑍𝑡) = ℎ0(𝑡)𝛹(𝛾𝑍𝑡)                            (1) 

  

where h0(t) is the baseline hazard function, representing 

the failure rate of the equipment not affected by covariates, 

the link function Ψ(γZt) is related to the covariate Zt value 

and the covariate coefficient γ weights the influence of the 

covariate on the failure rate. See Fig.2 

PHM have the benefits that it is not necessary to assume a 

specific hazard rate functions and can effectively 

incorporate information on equipment service age and 

condition monitoring data, so it is suitable to estimate the 

probability of asset failure at any time in a given state and 

then evaluate the health state of the machine. [36] 

 

Fig. 2. Relation between the total hazard rate and the baseline 

hazard rate with covariates.[39] 
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On the other hand, the main assumptions of PHM are the 

following: first, Survival times of the individuals are 

independent; second, hazards are proportional, and the 

hazard ratio is constant over time; third, the covariates 

have a multiplicative effect on the baseline hazard rate. 

References to the use of this type of models in reliability 

can be found in papers from the 90's [33] and more recent 

cases applied to prognosis and prediction of the failure rate 

of industrial assets in [34-38]. Finally, a summary of the 

research progress of the use of PHM in Prognosis is 

presented by Chaoqun D. et al in [36], including the 

advantages and current challenges to face in the future 

research of PHM applied to reliability. 

 II. CASE STUDY 

 A. Description the refinery production scheme 

The refinery has two atmospheric distillation lines, which 

are based on two topping units, both have their associated 

product treatment units to meet the required standards. 

These units are the kerosene, naphtha and diesel 

desulphurisation units. The hydrogen required in these 

units is produced in two steam reforming plants, which are 

also installed in the same area. 

The production scheme is completed with two deep 

conversion areas, the first is the conversion area 

comprising the vacuum distillation unit, fed by the residue 

from the topping units. In this area, in addition to the 

product treatment units adapted to the characteristics of the 

cracked fractions, there is also an FCC (Fluid Catalytic 

Cracking) unit which transforms the cracked products 

extracted in the vacuum unit into products that are suitable 

to be processed in the desulphurisation units and converted 

into final products, mainly diesel, gasoline and LPG. 

There is also a more recent area, designed to reduce fuel 

oil production, which performs a deeper conversion 

through the required technology to convert the residue 

from the vacuum unit into valuable products, mainly 

naphtha and diesel. Again, to convert these products into 

final products for sale, there are naphtha and diesel 

desulphurisation plants. Each of these production areas, 

has units that reduce gaseous and liquid emissions, these 

are the sulphur plants and the acid and ammonia water 

treatment plants to complete the adaptation of products. 

Finally, the refinery has many tanks and spheres and a 

maritime dock. In the first area, crude oil, intermediate 

products, and final products are stored and transferred (by 

pumps) both inside and outside the refinery. In the second 

area, the maritime dock, the raw products are received, and 

the final products obtained from their transformation in the 

industrial plant are shipped. 

 B. Dataset of centrifugal pumps 

The refinery being studied has a fleet of 3,200 rotating 

machinery items, including air coolers, centrifugal and 

reciprocating compressors, centrifugal fans, both 

centrifugal and positive displacement pumps, steam 

turbines, among others (see Fig. 3). Up to 1,194 items are 

centrifugal process pumps, which represents a 38% of the 

rotating equipment of the plant. 

 

 

Fig. 3. Distribution [%] of rotating equipment in the refinery. 

The atmospheric distillation area has the highest 

percentage of centrifugal process pumps in the refinery, 

while the tanks and marine terminal area has the fewest. 

Table 1 shows the distribution of centrifugal pumps as a 

percentage of the plant and of the dataset used (consisting 

in 675 centrifugal pumps). We selected a sample of 675 

centrifugal pumps of different designs and operating 

conditions in such a way that it would be representative. 

The different proportion of pumps corresponding to tanks 

and dock in the dataset with respect to the global refinery 

is because in this area there is a significant amount of 

equipment that works discontinuously or for which there 

is not enough vibration data available due to the few 

working hours accounted during the year. 
 

Table 1. Distribution of centrifugal pumps by production area. 

 
 Dataset Refinery 

 % pumps # pumps % pumps # pumps 

Atmospheric 

distillation area 
44.8% 303 41.3% 503 

Conversion area 35.8% 241 26.3% 320 

Fuel reduction area 12.2% 82 10.8% 132 

Tanks and dock 7.3% 49 21.6% 263 

 C. Potential predictor variables 

The dataset includes age, design standards (API), global 

vibration value and operating conditions as well as other 

hydraulic parameters which, according to the available 

literature [30] and the expertise of plant technical staff, can 

most affect the service life of these assets. See Fig. 4. 

 
Fig. 4. Factors affecting reliability of centrifugal pumps [30]. 
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The output variable is the number of failures recorded in 8 

years (from 2014 to 2022) which repair required the 

shutdown of the pump. On the other hand, a total of 22 

variables are considered as potential predictors of the 

failure rate of the centrifugal pumps, which are divided 

into 5 groups (operating conditions, hydraulics, 

mechanical, sealing and age). It should be kept in mind that 

the operating conditions of the pump (which may change 

over time) are not being specified for each failure, since 

this study is intended to assess the potential maximum 

useful life of the pumps considering their design 

characteristics and expected operating conditions. See 

Table 2. 
 

Table 2. Potential predictor variables for MTBF. 

 
OPERATING 

CONDITIONS 

HYDRAULICS MECHANICAL SEALING AGE 

Fluid type Double suction rpm Seal arrgt. API 

610 ed 

ISO 10816-7 

vibration zone 

Tip speed Power Seal type  

Bottom pump Diameter ratio Bearing type API 682 Plan  

Flow ratio Efficiency Lubrication type # Seals  

NPSH margin Nss    

Relative density     

Dynamic viscosity     

Vapour pressure     

 

To better understand what the variables used refer to and 

why they have been selected, a brief description of each of 

them is given below, indicating as well if they are of the 

categorical (CA) or continuous (CO) type. 

 

• Fluid type (CA): Categorised according to the 

material selection guide Annex G - API 610 12th. 

• ISO 10816-7 Vibration Zone (CA): Category 1 

equipment (ISO 10816-7) is considered, and the 

vibration severity of each machine is assessed as A, 

B, C and D according to the standard. 

• Bottom tower pump (CA): This indicates whether the 

pump handles the product from the bottom of a tower 

or not. This service usually presents problems of 

filter clogging and soot. 

• Flow ratio (CO): The operation of centrifugal pumps 

at flows far from the BEP (Best efficiency point) 

reduces the useful life of the equipment, so the 

normal Flow vs Flow BEP ratio is used to assess how 

the flow affects the life of the pump. 

• NPSH margin (CO): The suction conditions are 

particularly important, to avoid cavitation problems. 

The difference between NPSHd and NPSHr at the 

rated operating point of the pump is considered. 

• Relative density (CO): The density of the fluid can 

have a certain influence on the pump behaviour, e.g., 

working pressure, power consumption, vibrations, or 

mechanical seal. The density relative to water is used. 

• Dynamic viscosity (CO): The dynamic viscosity of 

the fluid is considered because it can affect 

differential head, torque and internal frictions in 

impeller and pump casing. 

• Vapour pressure (CO): Evaluated with the NPSHd, it 

can give an idea of the possibility of the fluid 

vaporising at the pump suction and therefore 

cavitation or performance problems. 

• Double suction (CA): Double suction pumps have 

special hydraulic and operating characteristics vs 

single suction impellers. 

• Tip speed (CO): The speed at which the fluid leaves 

the impeller tip is important when assessing possible 

internal erosion if solids are present in the fluid 

stream. 

• Diameter ratio (CO): The ratio of installed impeller 

diameter vs. maximum allowable impeller diameter 

for the installed casing is used, as hydraulic problems 

can arise if the gap between them is narrow. 

• Efficiency (CO): There are many factors that 

influence the efficiency of pumps, noise, internal 

recirculation, vibrations, mechanical and hydraulic 

friction, etc. Some of these can affect the useful life 

of the equipment. 

• Nss (CO): Suction specific speed is a dimensionless 

indicator that relates the geometry of the impeller at 

suction and certain characteristics at suction, such as 

rpm, NPSHr and flow rate. 

• RPM (CA): The rotational speed can influence the 

reliability of centrifugal pumps as it can affect the 

service life of bearings and mechanical seals or 

abrasive wear. Three categories of speed are 

identified: low, medium, and high speed. 

• Power (CO): Power has been considered because it 

may be reasonable to think that certain mechanical 

problems (e.g. unbalance, misalignment, etc.) may 

evolve differently depending on the working power 

of the driver. 

• Bearing type (CA): Plain bearing and roller bearing 

are considered because they are an important cause 

of failures in rotating equipment and specifically also 

in centrifugal pumps. 

• Lubrication type (CA): Various lubrication systems 

have been categorised: oil mist, oil ring, forced 

lubrication. 

• Seal arrangement (CA): Cartridge seal, component 

seal and seals for high-speed pumps are considered. 

• Seal type (CA): Dual seals and single seals. 

• API std 682 plan (CA): A difference is made between 

pressurised dual seals (e.g. API Plan 53A, 54, etc.) 

and non-pressurised dual or single seals (e.g. API 

Plan 52, 12, etc.). 

• # Seals (CA): The number of mechanical seals of the 

pump is considered, overhung pump (1 seal) or a 

double supported pump (2 seals). 

• API 610 std edition (CA): To assess the age and the 

improvements made to each of the centrifugal pumps 

we use the edition of API 610 std under which they 

have been designed. The dataset includes pumps 

manufactured according to the 4th edition (year 
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1965) up to the 11th (year 2010). 

 

III. WORK-IN-PROGRESS COX PHM MODEL 

 

Before addressing the development of models to achieve 

the stated goals, a detailed analysis of the nature of the data 

should be carried out and an assessment should be made of 

if the available methods have been successfully used for 

similar cases. The following considerations should also be 

considered: 

 

• There are pumps that did not fail during the survey, 

so the dataset has some 0’s as outcome. 

• The number of recorded failures is a discrete and 

limited variable (from 0 to 35), so that several assets 

have the same outcome and therefore the same failure 

rate and MTBF. 

• For the further development of the models, it is 

important to determine whether it is assumed that 

after a repair the asset is in 'good as new' condition. 

• The predictor variables are time invariant (expected 

operating conditions and hydraulic and mechanical 

design). On the other hand, the overall vibration is an 

average data for the time frame considered. 

 

We are currently in the phase of basic statistical analysis 

and data cleaning and at the same time we are checking if 

the Proportional Hazard Model (PHM) is suitable for 

meeting the proposed objectives with the available dataset. 

The results of the developed PHM models will be 

compared to determine which one offers better results for 

the prediction of the expected MTBF in centrifugal pumps, 

as well as in the determination of those covariates that have 

a greater impact. Finally, these results will be contrasted 

with reliability data from another similar refinery to check 

the accuracy of the models. 

 

IV. CONCLUSIONS AND OUTLOOK 

 

Centrifugal pumps are widely used in industry because of 

their versatility and simplicity of design. In oil refineries, 

centrifugal pumps account for more than 35% of the 

rotating equipment fleet and handle highly hazardous 

products. It is therefore essential to maximise their 

reliability, as any failure of these assets could result in an 

accident. For this reason, as well as the high production 

loss caused by a plant shutdown, maintenance and 

inspection schedules in this industry are strict to optimise 

the pump’s reliability. In this paper we propose to develop 

a Cox Proportional Hazards model, applied to API 

centrifugal pumps, to predict the maximum expected time 

between failures of these assets as a function of variables 

of interest (covariates). An accurate prediction of this 

indicator would help to set other KPI’s and targets 

according to the characteristics of the fleet, so that 

maintenance activities could be better planned. The PHM 

model would also be used to determine how these 

covariates affect the expected useful life of API centrifugal 

pumps, thus helping to increase their reliability and reduce 

the risk of accidents and operating costs. 

This type of model is currently used for predicting 

industrial equipment. It incorporates relevant design 

characteristics, operating time, and on-line data to predict 

the health status of the machine at any given time. In the 

present case, their application is proposed on a dataset that 

includes pump design variables (hydraulic and 

mechanical) as well as those related to the API 610 

standard for centrifugal process pumps and 682 for sealing 

systems. 

A future area of research for this project is the integration 

of on-line operating data from distributed control systems 

(DCS) and vibration signals to change the paradigm from 

statistically based to real condition-based prediction of the 

assets’ useful life. 
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