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Abstract – Rotor cage induction motors are widely 

used in the industry and their unpredicted shutdown can be 

very costly. Therefore, for safety and economic 

considerations, there is a need for identifying incipient 

faults.  Among the induction motors faults, the rotor bar 

faults are among the most common failures. These 

generate sideband frequency components around the 

frequency of the power supply. The amplitudes of these 

sideband frequencies increase with the progression of the 

bar fault. Here we propose that the Recursive Matrix 

Pencil Method is able to track the growth of the sideband 

frequency amplitude excited by a rotor bar fault and show 

the results of applying the technique to numerically 

simulated data. Signal preprocessing consists in filtering 

the supply frequency and bandpass filtering with a 

passband frequency range specified by one of the sideband 

frequencies. The paper uses the modelling of the induction 

motor current signal so that the gradual development of a 

rotor bar fault can be simulated. It is shown that the 

Recursive Matrix Pencil Method gives a time advantage 

over the Classical Matrix Pencil Method and the 

possibility of practical application. 
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 I. INTRODUCTION 

Rotor cage induction motors are the most common type 

of electric machines used in the engineering, metallurgical, 

mining, and aviation industries [1] due to their operation 

performance and low maintenance costs.  

Heavy industries have harsh operating conditions, 

which often lead to motor component wear—up to 15% of 

industrial motors fail annually [2]. Even if wear does not 

cause the motor to fail, efficiency may be compromised. 

The operation of a defective motor is accompanied by 

torque and speed fluctuations and additional vibrations. In 

this case, the efficiency of the motor drops by 3 % to 13 %, 

which leads to an increase in power consumption [3]. 

Approximately 10 % of induction motor faults occur in 

the rotor [4], where broken rotor bars or cracked end rings 

are the most common issues. The challenges of diagnostics 

are the weak fault signatures which are difficult to detect 

with simple methods. Furthermore, rotor axial air ducts, 

low frequency load oscillations, and rotor core anisotropy 

may cause false alarms, which can be misinterpreted as 

induction-motor rotor faults [5]. Therefore, the industry 

increasingly needs more efficient methods and tools to 

diagnose and assess induction motor health status.  

Motor Current Signature Analysis (MCSA) is one of 

the most extensively utilized technique for rotor bar 

diagnostics. It detects, from current signals, the specific 

signature associated with a fault. One of the major 

difficulties for detecting bar fault-related harmonics in 

MCSA is the fundamental frequency harmonic, which is 

considered as “noise” from the point of view of fault 

detection. 

The MUSIC and ESPRIT methods can find the defect 

harmonics in noise under non-stationary conditions, but 

have high computational complexity. The Prony method 

has lower computational costs, but its efficiency decreases 

sharply with increasing noise level in the signal [6]. The 

Matrix Pencil Method (MPM) is a development of the 

Prony method. The computational efficiency of MPM is 

5.7 times higher than that of MUSIC and ESPRIT [7]. The 

MPM was used in the diagnosis of broken rotor bars [7-9]. 

Thus, in [7], the authors combined the classical MPM with 

a classifier based on the support vector machine algorithm. 

In [8], an adaptive MPM with auto-tuning of the response 

threshold based on information entropy was proposed. 

This method can accurately detect symptoms of mixed 

rotor faults at low load and low motor speed in steady state. 

In [9], the MPM and Wiener filter are applied to the current 

signals of a motor with a rotor defect to remove known 

signal harmonics and improve the signal-to-noise ratio. 

Thus, the MPM has the potential to effectively detect 

motor rotor defect symptoms under unsteady conditions. 

This paper proposes a new technique in the diagnostics 

of rotor bar faults based on the Recursive Matrix Pencil 

Method (RMPM). The method works in a moving window 

manner and tracks the value of the amplitude of a fault 

characteristic frequency, which grows with the 

development of this defect. In the proposed technique, the 
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signal undergoes a preliminary filtering of the supply 

frequency and bandpass filtering with a passband 

frequency range specified by one of the sideband 

frequencies.  

The paper is organized as follows. Section 2 describes 

the signal model used. Note that this paper models 

induction motor current signal so that the gradual 

development of a bar fault can be simulated, which is 

difficult to do experimentally. The processing technique 

based on RMPM is presented in Section 3. The method 

uses the procedure for filtering known components 

described in Section 4. The numerical simulated current 

signal with an incipient bar fault is considered for the 

validation of the proposed method in Section 5. 

The main contribution of this article is that RMPM can 

be used as a diagnostic tool in rotor bar fault detection, 

tracking the amplitude of a sideband frequency. The 

methodology was validated by using simulation signals, 

and its effectiveness is presented. 

 II. MOTOR CURRENT SIMULATION SIGNAL  

In this paper, a mathematical model based on the 

equivalent electrical circuit [10] is used to numerically 

simulate the motor current signal.  

As is well known, broken rotor bars in an induction 

machine can be detected by the presence of sideband 

frequencies in the stator current spectrum (Fig. 1). 

 

Fig. 1. Typical current spectrum for a motor with broken bars 

The amplitudes of 𝑓𝑙𝑜𝑤 = (1 − 2𝑠)𝑓1, 𝑓ℎ𝑖𝑔ℎ = (1 +

2𝑠)𝑓1 depend on fault severity and loads. Here 𝑓1 is the 

supply frequency and 𝑠 is the motor slip.  

The impact of rotor bar faults can be modelled by 

unbalancing the rotor resistance [10]. A broken rotor bar is 

simulated by replacing the resistance of one phase of the 

rotor 𝒓𝒓
′  with the following value:  

∆𝑟𝑟
′ = 𝑟𝑟

′ (1 +
3𝑛𝑏𝑏

𝑁𝑏 − 3𝑛𝑏𝑏

), 

where 𝑁𝑏 is the total number of rotor bars, 𝑛𝑏𝑏 is the 

number of broken rotor bars. 

Thus, by changing the resistance value ∆𝑟𝑟
′ according 

to a linear law, it is possible to simulate the gradual 

degradation of the rotor bar fault from a healthy state to a 

complete break.  

An induction four-pole motor with a power of 60 W 

and a supply frequency of 400 Hz was chosen as an object 

for modeling. This motor has a rotor with 10 bars per 

winding. Nominal parameters of the motor are given in 

Table 1. 

Table 1. Nominal parameters of the motor 

Nominal power 𝑃, kW 0,06 

Supply voltage 𝑈1, V 200 

Field frequency, 𝑛1, rpm 12000 

Rotor speed, 𝑛, rpm 10800 

Efficiency, 𝜂, % 59 

Power factor, 𝑐𝑜𝑠𝜑 0,56 

Ratio of starting torque to nominal torque, 

𝑚𝑠 

1,81 

Ratio of maximum torque to nominal 

torque, 𝑚𝑚𝑎𝑥 

2,44 

Ratio of starting current to nominal 

current, 𝑘𝑖 

4,22 

Nominal slip, 𝑠𝑟 , % 10 

Critical slip, 𝑠𝑚𝑎𝑥, % 46,7 

Moment of inertia, 𝐽, N*m 0,0000055 

 

The parameters of the motor model are calculated 

according to the method in [10] and are given in Table 2.  

Table 2. Motor simulation parameters 

Stator resistance, 𝑅𝑠, Ohm 41,1091 

Rotor resistance, 𝑅𝑟, Ohm 8,2075 

Stator inductance, 𝐿𝑠𝑝, H 0,0051 

Rotor inductance, 𝐿𝑟𝑝, H 0,0051 

Mutual inductance, 𝐿𝑚, H 0,1007 

 

The motor power supply is sinusoidal. The simulation 

was carried out in the Simulink environment, the sampling 

frequency was 50 kHz. 

 III. THE PROPOSED METHOD 

Figure 2 shows the flowchart of the proposed method 

which is based on the Matrix Pencil Method (MPM) [11].  

 

Fig. 2. Flowchart of the method  

First of all, the signal is subjected to decimation, since 

MPM and similar methods, for example, the Prony 

method, work faster and more accurately when the 

sampling frequency does not differ significantly from the 
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frequencies of signal components [12]. In our example 

with the supply frequency of 400 Hz, the sampling rate 

was downsampled to 2 kHz. 

At the next stage, the supply frequency is filtered. For 

this we use the procedure of filtering known frequency 

components described in Section IV.  

Next, we use a conventional bandpass filter with a 

passband frequency range around the frequency of interest 

to us, usually the frequency 𝑓𝑙𝑜𝑤, the amplitude of which 

is greater than the amplitude of the frequency 𝑓ℎ𝑖𝑔ℎ . 

For the signal that has passed such preprocessing, we 

use the Matrix Pencil Method. This allows us to estimate 

signal parameters 

 𝑦(𝑡) = ∑ 𝑅𝑘𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑡𝑀
𝑘=1  () 

from its samples 

 𝑦(𝑛𝑇) = ∑ 𝑅𝑘𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑛𝑇 = ∑ 𝑅𝑘𝑧𝑘
𝑛𝑀

𝑘=1
𝑀
𝑘=1    () 

where 𝑇  is the sampling period, 𝑅𝑘 = 𝐴𝑘𝑒𝑖𝜑𝑘  are the 

complex amplitudes, 𝛼𝑘 are the damping factors, 𝜔𝑘 =

2𝜋𝑓𝑘  are the frequencies and 𝑧𝑘 = 𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑇 are the poles 

of 𝑦(𝑡). MPM finds the amplitudes 𝑅𝑘 and poles 𝑧𝑘 from 

samples 𝑦(𝑛𝑇) = 𝑦𝑛, 𝑛 = 0,1, … , 𝑁 − 1, in two steps.  

Firstly, the poles 𝑧𝑘 = 𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑇  can be found [9] as 

the generalized eigenvalues of the matrix pencil 𝑌2 − 𝜆𝑌1.  

The 𝑧𝑘 are 𝑀 eigenvalues of 𝑌1
†𝑌2, where † denotes the 

pseudoinverse or Moore-Penrose inverse and 𝑌1, 𝑌2 are 

defined as follows: 

 𝑌1 = (

𝑦𝐿−1 … 𝑦1 𝑦0

𝑦𝐿 … 𝑦2 𝑦1

⋮ ⋱ ⋮ ⋮
𝑦𝑁−3 … 𝑦𝑁−𝐿 𝑦𝑁−𝐿−1

), () 

 𝑌2 = (

𝑦𝐿 … 𝑦2 𝑦1

𝑦𝐿+1 … 𝑦3 𝑦2

⋮ ⋱ ⋮ ⋮
𝑦𝑁−1 … 𝑦𝑁−𝐿+1 𝑦𝑁−𝐿

), () 

where 𝑀 ≤ 𝐿 ≤ 𝑁 − 𝑀 is the pencil parameter. It has been 

shown [9] that 
𝑁

3
 and 

2𝑁

3
 are the best choices for 𝐿 to ensure 

MPM is least sensitive to noise.  

For noisy data, the Singular Value Decomposition 

(SVD) is used to reduce the noise and to estimate the 

number 𝑀 of the signal poles. The SVD of the matrix 𝑌1 is 

given by: 

 𝑌1 = 𝑈𝑆𝑉𝑇 . () 

Here 𝑈 and 𝑉 are unitary matrices and 𝑆 is the diagonal 

matrix containing the singular values of 𝑌1. The superscript 

𝑇 notes the transpose. When arranged by magnitude, the 

singular values after the first 𝑀 are typically very close to 

zero. The order 𝑀 is thus estimated and the pseudoinverse 

𝑌1
†
 is replaced by the rank- 𝑀 truncated pseudoinverse: 

 𝑌1
† = ∑

1

𝜎𝑚
𝑣𝑚𝑢𝑚

𝑇 = 𝑉0𝑆0
−1𝑈0

𝑇 ,𝑀
𝑚=1  () 

where 𝜎1, … , 𝜎𝑀 are the 𝑀 largest singular values of the 

matrix 𝑌1,  𝑣𝑚 and 𝑢𝑚 are the corresponding singular 

vectors, 𝑉0 = (𝑣0, … , 𝑣𝑀), 𝑈0 = (𝑢0, … , 𝑢𝑀), 𝑆0 =
𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑀). 

The estimates of 𝑧𝑘 can be found by computing the 

eigenvalues of the 𝑀 × 𝑀 nonsymmetrical matrix: 

 𝑍𝐸 = 𝑆0
−1𝑈0

𝑇𝑌2𝑉0. () 

Secondly, MPM uses known 𝑀 and 𝑧𝑘 values to 

estiamate  complex amplitudes 𝑅𝑘 by solving the 

following least squares problem: 

       (

𝑦0

𝑦1

⋮
𝑦𝑁−1

) = (

1 1 ⋯ 1
𝑧1 𝑧2 ⋯ 𝑧𝑀

⋮ ⋮ ⋱ ⋮
𝑧1

𝑁−1 𝑧2
𝑁−1 ⋯ 𝑧𝑀

𝑁−1

) (

𝑅1

𝑅2

⋮
𝑅𝑀

) () 

We have set out the classical MPM which can be 

summarized as follows:  

Algorithm 1. Classical Matrix Pencil Algorithm 

Input: Signal samples 

𝑦𝑛 = ∑ 𝑅𝑘𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑡

𝑀

𝑘=1

= ∑ 𝑅𝑘 𝑧𝑘
𝑛 ,

𝑀

𝑘=1

  𝑛 = 0,1. … , 𝑁 − 1. 

Output: 𝑅𝑘, 𝑧𝑘 , 𝑘 = 1, … , 𝑀. 
Start 

1. Form matrices 𝑌1, 𝑌2,  as in (3), (4). 

2. Carry out the SVD of the matrix 𝑌1 (5).  

3. Estimate the number 𝑀 of signal poles. 

4. Find the rank-𝑀 truncated pseudoinverse 𝑌1
†
 (6). 

5. Find 𝑧𝑘 by computing the eigenvalues of 𝑍𝐸  (7).  

6. Estimate 𝑅𝑘 by solving (8). 

End 

The most computationally expensive step of MPM is 

to calculate the SVD of the matrix composed from the 

signal samples. For tracking signal parameters in a moving 

window, when a new data point enters the data window, 

this matrix changes only slightly, thus, it is reasonable to 

find its SVD not directly but using a low-rank SVD 

modification procedure [13] and the SVD of the old 

matrix. This leads to a significant reduction in the 

operation time. This idea is implemented in Recursive 

Matrix Pencil Method (RMPM) [14] the algorithm of 

which we will present further. 

Denote the matrices 𝑌1, 𝑌2 (3), (4) formed using the sig-

nal samples 𝑦0, 𝑦1, … , 𝑦𝑁−1, as 𝑌1
(0)

, 𝑌2
(0)

. Once the new 

data point 𝑦𝑁 enters the data window, the older sample 𝑦0 

should be deleted. Therefore, the new matrices 

𝑌1
(1)

, 𝑌2
(1)

 become 
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  𝑌1
(1)

= (

𝑦𝐿 … 𝑦2 𝑦1

𝑦𝐿+1 … 𝑦3 𝑦2

⋮ ⋱ ⋮ ⋮
𝑦𝑁−1 … 𝑦𝑁−𝐿+1 𝑦𝑁−𝐿

), () 

  𝑌2
(1)

= (

𝑦𝐿+1 … 𝑦3 𝑦2

𝑦𝐿+2 … 𝑦4 𝑦3

⋮ ⋱ ⋮ ⋮
𝑦𝑁 … 𝑦𝑁−𝐿+2 𝑦𝑁−𝐿+1

). () 

Having a known 𝑀-truncated SVD of 𝑌1
(0)

, we  intend 

to find an 𝑀-truncated SVD of 𝑌1
(1)

. It can be realized by 

the procedure of  low rank SVD modification method [13] 

and this is the important SVD step of RMPM:  

Algorithm 2. Effective SVD step of RMPM 

Input: 𝑀-truncated SVD of 𝑌1
(0)

.  

Output: 𝑀-truncated SVD of 𝑌1
(1)

.  

Start 

1. Find SVD factors of (0 𝑌1
(0)) using the known 

𝑀-truncated  SVD of 𝑌1
(0)

= 𝑈0𝑆0𝑉0
𝑇 and the equality 

(0 𝑌1
(0)) = 𝑈𝑆𝑉𝑇 = 𝑈0(𝑆0 0) (0 𝑉0

𝑇

𝐼 0
). 

2. Find orthogonal bases 𝑃, 𝑄 of the column spaces 

(𝐼 − 𝑈𝑈𝑇)𝐴,  (𝐼 − 𝑉𝑉𝑇)𝐵, respectively, and set 𝑅𝐴 =
𝑃𝑇(𝐼 − 𝑈𝑈𝑇)𝐴,   𝑅𝐵 = 𝑄𝑇(𝐼 − 𝑉𝑉𝑇)𝐵.   

3. Construct a matrix with lower dimensions 𝐾 ∈

 𝑅(𝑀+2)×(𝑀+2): 𝐾 = (
𝐼 𝑈𝑇𝐴
0 𝑅𝐴

) (
𝑆 0
0 𝐼

) (
𝐼 𝑉𝑇𝐵
0 𝑅𝐵

).   

4. Perform the SVD on this smaller matrix 𝐾 =

𝑈𝐾𝑆𝐾𝑉𝐾
𝑇 . Therefore, ( 𝑌1

(1)
0) =

(𝑈 𝑃) 𝑈𝐾 𝑆𝐾 ((𝑉 𝑄) 𝑉𝐾)
𝑇

= 𝑈1𝑆𝐾𝑉1
𝑇 .   

5. Obtain the desired 𝑀-truncated SVD of 𝑌1
(1)

: 

𝑌1
(1)

= 𝑈1(: , 1: 𝑀)𝑆𝐾(1: 𝑀, 1: 𝑀)𝑉1(1: 𝐿, 1: 𝑀)𝑇 .  
End  

Next algorithm describes the operation of the 

Recursive Matrix Pencil Method for 𝑊 sets of consecutive 

signal segments. 

Algorithm 3. Recursive Matrix Pencil Method 

Input: Signal samples (𝑊 sets of 𝑁 signal samples) 

𝑦𝑛 = ∑ 𝑅𝑘𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑡

𝑀

𝑘=1

= ∑ 𝑅𝑘  𝑧𝑘
𝑛 ,

𝑀

𝑘=1

  𝑛

= 0,1. … , 𝑁 − 2 + 𝑊. 
Output: 𝑅𝑘, 𝑧𝑘 , 𝑘 = 1, … , 𝑀, for each set of samples 

𝑦𝑤−1, … , 𝑦𝑁−2+𝑤,  𝑤 = 1, … , 𝑊. 
Start 

1. Form matrix 𝑌1 ≡ 𝑌1
(0)

 as in (3) from 𝑦0, … , 𝑦𝑁−1. 

2. Carry out the SVD of the matrix 𝑌1.  
3. Estimate the number 𝑀 of signal poles. 

4. Find the rank-𝑀 truncated pseudoinverse 𝑌1
†
 (6). 

for 𝒘 = 𝟏 to 𝑾 do 

5. Form matrix 𝑌2 as in (4) from 𝑦𝑤−1, … , 𝑦𝑁−2+𝑤. 

6. Find 𝑧𝑘 by computing the eigenvalues of 𝑍𝐸  (7).  

7. Estimate 𝑅𝑘 from (8). 

8. Find rank-𝑀 truncated SVD of 𝑌1
(𝑤)

 using 

Algorithm 2. 

end 

9. Form matrix 𝑌2 as in (4) from 𝑦𝑊−1, … , 𝑦𝑁−2+𝑊. 

10. Find 𝑧𝑘 by computing the eigenvalues of 𝑍𝐸  (7).  

11. Estimate 𝑅𝑘 from (8). 

End 

RMPM allows us to track the amplitude 𝐴𝑙𝑜𝑤 of the 

harmonic 𝑓𝑙𝑜𝑤 in a sliding window and notice the abnormal 

growth caused by the appearance of a rotor bar fault. Next, 

we consider an example of the proposed method. 

 IV. METHOD FOR FILTERING KNOWN 

COMPONENTS 

This section proposes a method for filtering known 

sinusoidal components in a signal. We will use it to filter 

the supply frequency, the amplitude of which is hundreds 

of times greater than the amplitude of the sideband 

frequencies. This frequency represents noise interfering 

with the determination of side frequencies. 

Let 𝑥𝑛 =  ∑ ℎ𝑘𝑧𝑘
𝑛−1𝑝

𝑘=1 , 𝑛 = 1, 2, … be a signal with 

poles 𝑧𝑘, 𝑘 = 1, … , 𝑝. We will assume that the poles 

𝑧1, … , 𝑧𝑞  are known. Our task is to obtain from the signal 

𝑥𝑛 a signal 𝑦𝑛with poles 𝑧𝑞+1, … , 𝑧𝑝, which are subject to 

further determination, i.e., filter out known components. 

The characteristic polynomial of the signal 𝑥𝑛 is 

defined as follows:  

𝜑(𝑧) = ∏(𝑧 − 𝑧𝑘)

𝑝

𝑘=1

= ∑ 𝑎𝑚𝑧𝑝−𝑚

𝑝

𝑚=0

 

and has the following property:  

∑ 𝑎𝑚  𝑥𝑛−𝑚 =

𝑝

𝑚=0

∑ ℎ𝑘𝑧𝑘
𝑛−𝑝−1

∑ 𝑎𝑚  𝑧𝑘
𝑝−𝑚

= 0

𝑝

𝑚=0

𝑝

𝑘=1

, 

since the last factor represents the values of the 

characteristic polynomial at its zeros. 

Let's split the characteristic polynomial of the signal 𝑥𝑛 

into known and unknown components: 

∏(𝑧 − 𝑧𝑘)

𝑝

𝑘=1

= ∏(𝑧 − 𝑧𝑘)

𝑞

𝑘=1

∙ ∏ (𝑧 − 𝑧𝑘)

𝑝

𝑘=𝑞+1

 

∑ 𝑎𝑚𝑧𝑝−𝑚

𝑝

𝑚=0

= ∑ 𝑐𝑘𝑧𝑝−𝑚

𝑞

𝑘=0

∙ ∑ ∝𝑖 𝑧𝑝−𝑞−𝑖

𝑝−𝑞

𝑖=0

 

Equating coefficients at 𝑧𝑝−𝑚, we get: 𝑎𝑚 =
∑ 𝑐𝑘

𝑞
𝑘=0 ∝𝑚−𝑘, where ∝𝑖= 0 for 𝑖 < 0, 𝑖 > 𝑝 − 𝑞. 

Substituting into equality ∑ 𝑎𝑚 𝑥𝑛−𝑚 =
𝑝
𝑚=0 0 

expression for the coefficients 𝑎𝑚, we obtain: 

∑  (∑ 𝑐𝑘

𝑞

𝑘=0

∝𝑚−𝑘) 𝑥𝑛−𝑚 =

𝑝

𝑚=0

0. 

After some manipulations, taking into account that 
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∝𝑖= 0 for 𝑖 < 0, 𝑖 > 𝑝 − 𝑞, we get: 

∑  (∑ 𝑐𝑘

𝑞

𝑘=0

∝𝑚−𝑘) 𝑥𝑛−𝑚 =

𝑝

𝑚=0

∑ ∝𝑚 ∑ 𝑐𝑘𝑥𝑛−𝑚−𝑘.

𝑞

𝑘=0

𝑝−𝑞

𝑚=0

 

Thus, ∑ ∝𝑚 ∑ 𝑐𝑘𝑥𝑛−𝑚−𝑘
𝑞
𝑘=0

𝑝−𝑞
𝑚=0 = 0. 

Denoting 𝑦𝑛 = ∑ 𝑐𝑘𝑥𝑛−𝑘
𝑞
𝑘=0 , we get  

∑ ∝𝑚

𝑝−𝑞

𝑚=0

𝑦𝑛−𝑚 = 0 

Thus, 𝑦𝑛 is the desired signal with poles 𝑧𝑞+1, … , 𝑧𝑝 

and a characteristic polynomial 

∏ (𝑧 − 𝑧𝑘)

𝑝

𝑘=𝑞+1

= ∑ ∝𝑖 𝑧𝑝−𝑞−𝑖

𝑝−𝑞

𝑖=0

. 

To find it, we use the operation of convolution of the 

original signal with a sequence of 𝑐𝑘   coefficients of the 

polynomial ∑ 𝑐𝑘𝑧𝑝−𝑚𝑞
𝑘=0 = ∏ (𝑧 − 𝑧𝑘)𝑞

𝑘=1  with known 

poles. 

 V. RESULTS AND DISCUSSIONS 

The signal considered is a 15-second model current 
signal with bar failure, taken with a sampling frequency of 
50 kHz. The supply frequency is set to 400 Hz, as in 
aircraft motors. To make the example more realistic, white 
Gaussian noise is added to the model signal so that the 
signal-to-noise ratio (SNR) is about 30 dB. SNR is 

calculated by the formula: 𝑆𝑁𝑅 = 10 lg
∑ 𝑦𝑘

2

∑ 𝑛𝑘
2 ,  where 

𝑦𝑘 , and 𝑛𝑘 are the signal and the noise samples, 
respectively.  

Figure 3 shows the spectrum of this signal in the supply 

frequency region at different times. The amplitudes of the 

frequencies  𝒇𝒍𝒐𝒘 and  𝒇𝒉𝒊𝒈𝒉, showing the presence of a bar 

fault, increase with time. This increase in amplitudes is 

what the proposed method should track. 

 

Fig. 2. Signal spectrum at different frequencies 

Before proceeding to signal processing, we perform its 

decimation. The signal sampling frequency is 50 kHz and 

is too high for further signal processing by RMPM. We 

decimate the signal by 25 times and set the new sampling 

rate to 2000 Hz. 

Further, we filter known frequency components from 

the decimated signal. Figure 4 shows the signal spectrum 

at different times after 400 Hz filtering. It can be seen that 

this frequency is absent, while the side frequencies still 

show an increase with time. However, the value of their 

amplitude decreased 10-fold compared to what was 

observed in the unfiltered signal (Figure 3). This is not 

critical, since the value of the amplitude is not important, 

we are tracking its behavior with the development of a 

defect. 

 

Fig. 3. Filtered signal spectrum at different frequencies 

With the intention to further track the amplitude of the 

frequency 𝑓𝑙𝑜𝑤 ≈ 386 Hz, we apply a bandpass filter with 

a passband from 380 to 390 Hz. Given the length of the 

window, 𝑁, we track the amplitude of the frequency 𝑓𝑙𝑜𝑤. 

Figures 5 and 6 show the amplitude and frequency values 

found by the proposed method working in a moving 

window over the entire time interval using RMPM at 𝑁 =
100 and  300, respectively.  

 

 

 

Fig. 4. Amplitude of 𝑓𝑙𝑜𝑤 and 𝑓𝑙𝑜𝑤 frequency at 𝑁 = 100 
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Fig. 5. Amplitude of 𝑓𝑙𝑜𝑤 and 𝑓𝑙𝑜𝑤 frequency at 𝑁 = 300 

It can be seen that a larger value of the window length 

gives a smaller variance in the parameter estimates.  

However, increasing the window length increases the 

processing time, as Table 3 shows. For comparison, the 

time of processing by the classical MPM is also given.  

Table 3.  Elapsed time 

Window 

length, 𝑵 

Time, seconds 

RMPM MPM 

100 7 11 

150 10 19 

200 12 30 

250 15 38 

300 18 49 

 

The time of RMPM is less than MPM, and the 

difference is greater at large 𝑁. With a 15-second signal, 

the processing time for large N can be more than 15 

seconds, which indicates possible difficulties when using 

MPM in real time. From this point of view, the RMPM 

gives a significant gain in time and the possibility of 

practical application. 

 VI. CONCLUSIONS AND OUTLOOK 

In this paper we have described using the Recursive 

Matrix Pencil Method (RMPM) for tracking the fault 

characteristic frequency and its amplitude in the 

diagnostics of induction motor rotor bar faults.  

The gradual development of a bar fault was simulated, 

which is difficult to do experimentally. Figures 4 and 5 

show that, at the initial moment – when the defect has not 

yet developed – the frequency and amplitude are difficult 

to determine. The more developed the defect, the more 

confidently we find a value of the frequency 𝑓𝑙𝑜𝑤 and its 

growing amplitude 𝐴𝑙𝑜𝑤. Thus, the evaluation of the 

frequency and amplitude can be used as an efficient and 

reliable approach to diagnosing rotor bar faults. 

For future work and recommendations, it is suggested 

to consider this analysis for DC motor diagnostic. 
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