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Abstract – The induction motors are a part of the bulk 

critical actuators in metallurgy, engineering and other 

industries. Generally, industries technological processes 

limit a redundancy of the critical actuators. Therefore, 

condition monitoring of the critical actuators parts is the 

basis of efficiency and reliability of the processes. In turn, 

the special operate conditions of the actuators, like 

unsteady speed and load, affects the motor condition 

monitoring success significantly. Induction motor rotor 

defects such as squirrel cage damage are minor but leads 

to unpredicted shutdown and greater maintenance costs. 

The present study presents a reliable method for detecting 

defects in squirrel cage rotor bars of the actuator induction 

motor which runs at various speed and load. The method 

is based on higher-order space harmonics processing in the 

motor current signal. The method combines normalization, 

filtering by variational mode decomposition, wavelet 

transform and train a convolutional neural network. The 

method generates a diagnostic model which allows to 

diagnosis motor rotor bar fault at various speed and load. 

At the same time, the model requires only one frequency 

and load for training. The experimental results show the 

model, which is trained at 35 Hz rotary speed, detects a 

rotor bar fault at 15 to 50 Hz rotary speed and up to 36% 

load of the nominal torque with 97% average accuracy. 

The proposed method is effective for the real equipment 

operating conditions which have limits of completeness 

datasets acquisition for training. 
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 I. INTRODUCTION 

A broken bar of a squirrel-cage rotor of an induction 

motor is up to 10% of all faults [1]. Breakage of the rotor 

bar leads to an increase in power consumption and a drop 

in the operating torque of the motor [2]. In addition, the 

broken bar can lead to secondary failures such as the 

increase in vibration caused by the defect leads to rapid 

wear of the rotor support bearings. Also, broken bar can 

lead to rotor jamming and stator winding damage during 

motor operation. Therefore, the rotor bar fault detection is 

very important task. 

The existing diagnostic methods are based on the 

detection of the spectral harmonic of a defect, equal to 

𝑓𝐵𝐵 = 2𝑠 ∗ 𝑓𝑠, where 𝑓𝑠 is the supply frequency, 𝑠 is the 

motor slip. The harmonic creates sidebands in an 

amplitude spectrum of the current signal [3] is defined as 

 𝑓𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑𝑠 = (1 ± 2𝑠)𝑓𝑠  () 

The sidebands are proven signs of a defect, but in some 

cases they are unreliable. The load on the motor shaft is a 

prerequisite for the sideband harmonics detection. In 

addition, some operating conditions lead to masking of the 

sideband harmonics [4]. Thus, cyclic loading, magnetic 

asymmetry and axial air ducts generate harmonics in the 

same frequency range as the 'broken bar' harmonics in the 

current signal. As a result, the diagnostic procedure can 

lead to spurious results and financial loss due to 

unnecessary maintenance work. 

Some researchers propose an analysis of transient 

currents during motor start-up [5] in order to bypass the 

problem. The evolution of the harmonic 𝑓𝐵𝐵  is clearly 

visible in the current signal in the start mode due to the 

change in slip s from 1 to 0. At the same time the evolution 

differs from the effects of cyclic loading which leads to the 

defect and masking effects are effectively separated. 

However, the authors note that approach is not suitable to 

motors powered by inverter converters. The motor slip 

keeps low over the start when powered by the inverter. As 

result, the defects are invisible. In addition, the approach 

is not recommended for medium and large motors [6]. 

Along with traditional sidebands (1) higher-order 

harmonics contain information about rotor bars condition. 

The rotor bar fault leads to arise space harmonics about 5th 

and 7th harmonics of the current supply frequency [7] 

(Fig. 1). The space harmonics are caused by the 

magnetomotive force and rotation relative to the rotor and 

stator. The space harmonics are defined as [7]: 

 𝑓𝑆𝑝𝑎𝑐𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = (𝑘(1 − 𝑠) ± 𝑠)𝑓𝑠,   () 

 𝑓𝑇𝑖𝑚𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = (𝑘 ± 2𝑛𝑠)𝑓𝑠,   () 
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where 𝑘 = 5, 7, 𝑛 = 1, 2, 3 …  

The higher-order harmonics contain load-related 

harmonics as well. But the load-related harmonics produce 

less masking effect than around supply frequency. Thus, 

the frequency spectrum analysis of the current signal 

around the 5th and 7th harmonics of the supply frequency 

is a more reliable diagnostic approach.  

 
Fig. 1. Harmonics of the defect in the region 5th and 

7th harmonics of the supply frequency fs=50 Hz 

 

The present paper proposes a diagnostic method of 

induction motor broken rotor bar which is based on the 

current signal higher-space harmonics analyze. In the 

proposed method, current signals with different motor 

supply frequencies are normalized relative to each other. 

Then, each signal is subjected to mode decomposition 

using the Variational Mode Decomposition (VMD). Mode 

decomposition is necessary to isolate useful signal 

components near the 7th harmonic of the supply frequency. 

After, the rest of the signal is converted into a set of images 

in the form of scalograms by wavelet-transform. A test set 

of images for one supply frequency value is used to train a 

convolutional neural network (CNN). Then, the 

performance of the neural network is evaluated on data for 

other supply frequencies. 

The work is organized as follows. Section 2 describes 

the proposed diagnostic method. The description of the 

experiments and the results of testing the proposed 

diagnostic method on signals are presented in Section 3. 

We consider two cases of the problem of induction motor 

fault diagnosis with variable-frequency drive (VFD) 

control 1) under different supply frequencies, loads and 

scalar V/f control and 2) under constant load and vector 

control. For VFD-fed induction motor’s operation, the 

changing frequency at the VFD output might affect or even 

invalid an induction motor fault diagnosis approach that is 

functional at a fixed operating frequency [8]. We use the 

matrix pencil method [9] to find the variable supply 

frequency to adapt our method to this case. 

The main contribution of the paper is the higher-order 

space harmonics can be considered as a diagnostic 

criterion in detecting broken rotor bars. The method is 

tested on real signals and its effectiveness is presented. 

 

 II. THE METHOD PROPOSED 

Figure 2 shows the flowchart of the proposed method. 

It works with motor current signals at different shaft 

speeds. Variable rotation speed is provided by supplying 

voltage of different frequency from the inverter converter. 

Therefore, current signals at different speeds have 

different sine frequencies. 

 

 
Fig. 2. Flowchart of the method 

 

First of all, it is necessary to normalize signals with 

different supply frequencies relative to each other. To do 

this, each signal is subjected to decimation. The new 

sampling rate is chosen to be 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 = 20 ∗ 𝑓𝑠.  

A preliminary analysis of the Fourier amplitude 

spectrum of the current signal with a defect showed that 

the signs of a defect are most pronounced in the region of 

the 7th supply harmonic. As a filtering, the signal is 

decomposed into IMF (Intrinsic Mode Functions) modes 

using VMD (Variational Mode Decomposition) [10]. Each 

IMF mode has only one central frequency. VMD identifies 

the important center frequencies directly from the data, but 

we can specify them ourselves, which is what we did. 

VMD decomposition of the current signal into 

components with frequencies 𝑓𝑠 , 3𝑓𝑠, 5𝑓𝑠, 7𝑓𝑠, 7𝑓𝑠, where 

𝑓𝑠 is the supply frequency, is presented in Fig. 3. 

For further analysis, a mode containing signal 

components in the region of the 7th supply harmonic is 

selected. 
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Fig. 3. VMD of the current signal 

 

Next, the received signal is divided into the fragments. 

The defect harmonic 𝑓𝐵𝐵 does not depend on the supply 

frequency, but depends on the motor load. Therefore, the 

harmonic of the defect will vary within some small limits 

(1-2 Hz). In order for each fragment of the signal to have 

the same number of defect harmonic periods, the length of 

the fragment is chosen equal to 𝐿 = 50 ∗ 𝑓𝑠. Thus, each 

fragment will fit the following number of periods: 

 𝑁 =
𝐿

𝐹𝑠𝑎𝑚𝑝𝑙𝑒
∗ 𝑓𝐵𝐵  =  

50𝑓𝑠

20𝑓𝑠
∗ 𝑓𝐵𝐵 = 2,5𝑓𝐵𝐵  () 

The received signal fragments are converted into a 

scalograms for the wavelet decomposition coefficients. 

The frequency range is from 6𝑓𝑠 to 8𝑓𝑠. Figs. 4, 5 present 

scalograms for different load level. It can be seen that the 

images with a bar defect have a characteristic periodic 

pattern.  

 
Fig. 4. Scalograms of signal fragments (low load) 

 

The images are converted to monochrome and fed to 

the input of a CNN (Fig. 6). 

A trail-and-error analysis was carried out to determine 

the CNN model parameters. The first convolutional layer 

contained 32 convolution kernels and outputted 32 feature 

maps with a size of 127×127 (we used zero padding to 

have the same size of output feature-maps). The 

MaxPooling layer (2 ×2) outputted 32 pooling maps with 

a size of 63×63. The second convolutional layer produced 

64 feature maps with a size of 63×63 and the next pooling 

layer provided 64 pooling maps with a size of 31×31. After 

the third convolutional layer, we have 128 maps with a size 

of 31×31 which than flatten in a layer with 4096 neurons. 

An output from the flatten level is passed to two Dense 

layers and output layer. 

 

 
Fig. 5. Scalograms of signal fragments (medium load) 

 

 

 
Fig. 6. Convolutional neural network model 

 

 

 III. RESULTS AND DISCUSSIONS 

A. Case study 1. Induction motor under scalar V/f 

control, variable supply frequency and load 

The experimental rig (Fig. 7) contains a set of induction 

motor with health and fault conditions. The motor works 

with VFD in scalar mode. The motor with fault condition 

contains a rotor with drilled holes in the area of the bars. 

All parameters of motor are shown in the Table 1. 

The current clamp was placed on the phase conductor 

to measure the current signal of one phase. The signals 

were sequentially taken at different supply frequencies. 

The supply frequency varied from 15 Hz to 50 Hz in 5 Hz 

increments. Also, the signals were taken at three levels of 

load on the motor shaft: M1 = 2%, M3 = 20%, M5 = 36% 

of the nominal torque. There are 24 signals in total. The 

sampling rate was 50 kHz. The duration of the signal was 

60 seconds. 
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Fig. 7. Experimental rig 1 

Table 1. Parameters of the motor 

Nominal power, kW 0,37 

Nominal voltage, V 220 

Nominal frequency, Hz 50 

Nominal torque, N*m 1.24 

Number of all bars of rotor 34 

Number of broken bars 3 

Examples of signal spectra in the region of the 7th 

supply harmonic are shown in Figure 8. As can be seen, 

defect harmonics are present in the spectrum regardless of 

the load and supply frequency. The images of the seventh 

harmonic spectrum are very similar to each other, which 

gives the prospect of obtaining a good defect recognition 

model based on the analysis of this particular signal 

component. 

 
Fig. 8. Examples of signal spectra 

The test data set contained scalograms of current 
signals with different supply frequencies and different 
motor loads. Due to the limitations of the initial data set, 
images were composed of intersecting fragments with the 
addition of a small step. 

The CNN model (Fig. 6) was trained on a set of images 
for a supply frequency of 35 Hz at the M3 load. The 

training lasted 150 epochs. The learning curves are shown 
in Fig. 9. 

 

 

Fig. 9. Learning curves 

The trained model was tested on all other sets of images. 
The obtained accuracy values are shown in the Fig. 10.  

 

 

Fig. 10. Accuracy matrix for all datasets for the model 

trained on 35 Hz and M3 load 

The model gives the best accuracy values on datasets 
with load and supply current values close to those on 
which it was trained. Data with M1 load is difficult for the 
classification, as well as with the lowest frequency of 15 
Hz at M5 load. The average accuracy of the model was 
97%, the minimum accuracy was 66 %. 

Figure 11 shows a similar result for the model trained 
on data with a supply frequency of 35 Hz and M5 load.  

 

Fig. 11. Accuracy matrix for all datasets for the model 

trained on 35 Hz and M5 load 
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The model gives almost perfect accuracy on datasets 

with a load of M3 and M5, however, the accuracy on 

datasets with a load of M1 has dropped significantly 

compared to the old result.  

M3-35 Hz model M5-35Hz model 

  

Fig. 12. Confusion matrices for the dataset with the 

supply frequency 20 Hz and M5 load 

It can be seen that the second model gives a better 

accuracy value than the first model (0.9 instead of 0.81) on 

a dataset with a supply frequency of 20 Hz and a load of 

M5. The confusion matrices in Fig. 12 show that the 

quality of recognition of defective samples has grown 

significantly. 

As we see, in the case of changing conditions, the 

model works well with similar data. If the load and/or 

supply frequency differ significantly, the model is more 

likely to be wrong. 

 

B. Case study 2. Induction motor under vector 

control, variable supply frequency and pump load 

In this Section, the proposed method is used for current 

data for the induction motor fed by VFD in vector mode, 

subjected to healthy and faulty cases under a pump load.  

The experimental rig is presented in Fig. 13. 

 
Fig. 13. Experimental rig 2 

An Oberdorfer 60P centrifugal pump is installed on an 

experimental stand as a load for the induction motor. The 

pump is connected to the motor via a belt drive. The pump 

rotation speed matches the motor speed. The frequency 

converter controls the motor in vector mode while 

maintaining a constant output torque. The power 

frequency varied from 15 to 35 Hz in 10 Hz increments. 

The sampling rate was 70 kHz. The duration of the signal 

was 90 seconds. 

The distinctive feature of this experiment is the 

variable supply frequency caused by the variable 

frequency drive control. Fig. 14 represents a fragment of 

the current signal taken from the motor with broken bars. 

Even though it looks like a pure sine wave, its supply 

frequency changes over time. Fig.15 shows the change in 

frequency of 7th supply harmonic over 20 seconds. 

 
Fig. 14. Current signal 

 
Fig. 15. Frequency of 7th supply harmonic 

We use the Matrix Pencil Method (MPM) [9] to find 

the frequency. MPM allows us to estimate signal 

parameters 𝑦(𝑡) = ∑ 𝑅𝑘𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑡𝑀
𝑘=1   from its 

samples 𝑦(𝑛𝑇) = ∑ 𝑅𝑘𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑛𝑇 = ∑ 𝑅𝑘𝑧𝑘
𝑛𝑀

𝑘=1
𝑀
𝑘=1 , 

where 𝑇   is the sampling period, 𝑅𝑘 = 𝐴𝑘𝑒𝑖𝜑𝑘   are the 

complex amplitudes, 𝛼𝑘 are the damping factors, 𝜔𝑘 =

2𝜋𝑓𝑘   are the frequencies and 𝑧𝑘 = 𝑒(𝛼𝑘+𝑖𝜔𝑘)𝑇  are the 

poles of 𝑦(𝑡). MPM finds the poles 𝑧𝑘 as the solution of 

a generalized eigenvalues problem by using the matrix 

pencil formed from the sampled values 𝑦(𝑛𝑇) = 𝑦𝑛, 𝑛 =
0,1, … , 𝑁 − 1, Knowing 𝑧𝑘 we can find 𝑓𝑘 . 

Fig. 16 shows the confusion matrices for the cases of 

two different training datasets. In the first case we use 

current signals with a supply frequency of (approximately) 

25 Hz. Testing the trained model on data with three 

different frequencies of 15, 25, 35 Hz gives accuracies of 

0.91, 0.99, 0.98. The confusion matrices can be seen in the 

first column of Fig. 16. In the second case, training is 

carried out on data with a frequency of 35 Hz and the 
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corresponding accuracies for data with frequencies of 15, 

25, 35 Hz are 0.87, 0.93, 1.  

Train set: 25 Hz Train set: 35Hz 

  

  

  

Fig. 16. Confusion matrices for different training sets 

As in the previous example, we see that the trained 

model works better on similar data. When we changed the 

training set frequency from 25 to 35 Hz, the 15 Hz data 

was classified worse. 

 IV. CONCLUSIONS AND OUTLOOK 

In this article, we have described a method for 

diagnosing broken rotor bars using the higher-order space 

harmonics of the current signal. As it was shown (Fig.10), 

the model trained at one supply frequency with one load 

level also works for other supply frequencies with another 

load values. The maximum accuracy is 100%, the average 

accuracy is 97%. The method can be transferred to the case 

of variable frequency drive and variable supply frequency. 

Thus, the method performed well in conditions where 

training data is limited (in the examples considered, the 

training set consisted of only 1000 images) and when the 

supply frequency is variable. This can be very useful in 

real production environments where we usually deal with 

VFD-fed induction motor it is not always possible to 

collect a lot of defective data. Further work will be directed 

to the study of other types of faults. 
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