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Abstract – Human Experts may diagnose the state of a 

rotating machine by listening to its vibration sounds. 

Variational Auto-encoder (VAE) is an alternative 

method to realize the diagnosis by AI learning. 

Previous studies have shown that when the normal 

state can be assumed to be a single Gaussian 

distribution, anomaly scores can be calculated as 

deviations from the center of the distribution in the 

VAE latent space. However, when the normal state 

consists of different modes corresponding to operating 

conditions, the calculation may not be a simple task. As 

a way to solve this problem, the use of Conditional 

Variational Auto-encoder (CVAE) which performs 

VAE learning including operating conditions, seems 

promising. In this study, we show verification results 

that the anomaly score based on the normalized 

Euclidian distance in the CVAE latent space can detect 

anomalous conditions using synthesized data and real 

acceleration measurement data with rotation speed 

changes. 

 

Keywords – Conditional Variational Auto-encoder, 

Condition Based Maintenance, Bearing Anomaly 

Detection, Industry Innovation and Infrastructure. 

 

 I. INTRODUCTION 

Anomaly detection methods are important for realizing 

condition based maintenance (CBM) of factory machines 

[1]. There are various types of anomaly, and it is necessary 

to determine the threshold for anomaly detection 

depending on the target and its states. Human experts can 

make judgments based on their experiences in various 

situations. Currently, one of the leading ways to realize this 

with AI is the VAE method, which calculates anomaly 

scores after learning the normal conditions [2,3,4]. 
In practice, as the normal state generally changes 

depending on the operating conditions (rotating speed, 

operating load, etc.), it is difficult to discriminate 

anomalies in consideration of the variation of all operating 

conditions [5]. Then, Conditional Variational Auto-

encoder [6] (abbreviated as CVAE), which performs 

learning including operating conditions, is emerged as a 

promising method that can handle such cases [5,7,8]. 

In this study, we applied CVAE and examined the 

resulting distribution in its latent space for synthetic data 

and measured data. Also, the effectiveness of normalized 

Euclidean distance in the CVAE latent space as the 

anomaly score is verified. The paper consists of the 

description of the anomaly score calculation in section II, 

synthetic model data and results in section III, real 

measurement data and results in section IV, and 

conclusions.  

 II. VAE AND CONDITIONAL VAE 

We briefly describe how to calculate anomaly scores 

using VAE [2]. The processing flow of the VAE is shown 

in Fig. 1. The VAE encoder generates latent variables with 

the specified number of dimensions D by learning a set of 

multidimensional training variable xkm (k and m represent 

the specific sample and the specific variable of the sample, 

respectively).  
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Fig.1. Processing flow of the Variational Auto-encoder (VAE). 

The latent variable 𝑧𝑘𝑑  (k and 𝑑  represent the 

specific sample and the specific latent variable) that 

corresponds to each training sample is determined along 

the obtained latent space axes. The VAE decoder outputs 

the reconstructed variable x’km corresponding to the 

original training variable xkm, and the backpropagation of 

the neural network is used to minimize the squared error 

between xkm and x’km while constraining the distribution 

shape in the latent space to be Gaussian [9]. In the VAE 

processing, a virtual standard deviation 𝑣𝑘𝑑 of the latent 

variable 𝑧𝑘𝑑 is estimated. The estimation is converged so 
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that the average optimization can be realized with the 

perturbed values calculated by 

𝑧𝑘𝑑 + 𝑣𝑘𝑑𝜀,       𝜀 ∈ N(0,1) (1) 
where N(0,1) represents the standard normal 

distribution. 

Optimization is performed by minimizing the loss 

function (2), which corresponds to minimizing the 

reconstruction error in the first term and minimizing the 

KL divergence in the second term. This brings the 

distribution of decoder inputs (1) closer to the standard 

normal distribution.  
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where S is the number of training samples and M is the 

number of sample variables. 

Anomaly score 𝑉𝐷  can be calculated as the 

normalized Euclidean distance from the center of the 

distribution [10],  
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where 𝑧𝑑̅̅ ̅ is the mean value of 𝑧𝑑, 𝜎𝑑 is the standard 

deviation along the latent space axis 𝑑 , 𝐷𝑐𝑚𝑝𝑠  is the 

dimensionality compensation factor, 𝑅(𝑓𝑖, 𝑓𝑗) is the 

correlation coefficient between basis functions, and 𝑓𝑖(𝑚) 
is the m-th sample variable consisting the i-th basis 

function corresponding to the i-th latent axis [2].  

When the input distribution is close to a single 

Gaussian distribution, the latent space distribution is also 

close to a Gaussian distribution, and the degree of anomaly 

can be evaluated by the distance from the center of the 

latent space distribution. However, when the input 

distribution is divided into multiple clusters or a belt-like 

transition (Fig. 2(a)) due to changes in operating 

conditions, the distance from the center of the entire 

distribution does not accurately represent the degree of 

anomaly. Ideally, we should evaluate the deviation from 

the ridge line of the normal condition as shown in Fig. 2(b). 

However, it is generally difficult to determine an 

applicable evaluation formula which properly expresses 

the distribution. Therefore, it is practical to divide the 

distribution into clusters of appropriate size and express 

the degree of anomaly by the distance from the center of 

each cluster as shown in Fig. 2(c). 

To create a separate VAE for each operating condition 

is a way to do the division, but it not only complicates the 

training process, but also poses the challenge to classify 

operating conditions properly. On the other hand, with 

CVAE, we can train in a unified manner with one VAE, 

including the conditions. By providing one hot encoded 

conditions to CVAE, it is possible to move clusters to the 

center of the latent space [5]. Actually, with the effect of 

the VAE loss function (2), the distribution for each cluster 

gathers in one place as shown in Fig. 2(d), and the anomaly 

score is calculated based on the distance from the center 

regardless of the cluster to which the input sample belongs. 
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Fig. 2. Illustration of latent space distributions. (a) Points 

surrounded by normal state distributions become normal in 

VAE, (b) ideal anomaly judgment, (c) anomaly judgment for 

each cluster, (d) cluster movement by CVAE can unify the 

normal clusters.  
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Fig. 3. Processing flow of the Conditional VAE (CVAE). 



19th IMEKO TC10 Conference 

“MACRO meets NANO in Measurement for Diagnostics, Optimization and Control” 

Delft, The Netherlands , September 21–22, 2023  

In CVAE processing, it is necessary to input operating 

conditions (rotational speed, load, etc.) as one hot encoded 

variables to the encoder and decoder together with other 

training sample variables or latent variables (Fig. 3). 

However, only the input variable xkm is compared with the 

reconstructed variable x’km for the reconstruction error 

term (2) in the optimization.  

 III. MODEL SIMULATION 

Firstly, we confirmed the effectiveness of CVAE under 

an ideal condition using synthetic data. As shown in Fig. 

4, two dimensional random samples distributed in a 

semicircle was created with equations (6)-(9). It simulates, 

for example, a case in which x0 and x1 correspond to 

rotational speed and magnitude of vibration, respectively. 

The distribution expresses a phenomenon which shows 

intensified vibration at intermediate rotation speeds, as an 

example. 

𝑥0 = 1 + cos
𝜋𝑖

𝑁
+ 0.1𝜀0, (6) 

𝑥1 = sin
𝜋𝑖

𝑁
+ 0.1𝜀1, (7) 

𝑐 = ⌊18
𝑖

𝑁
⌋ , (8) 

𝜀0, 𝜀1 ∈ N(0,1), (9) 

where sample number i = 0 to N-1 (N = 540), condition 

value c=0 to 17 (number of conditions nc=18).  

 

 

Fig. 4. Two dimensional distribution of synthetic samples. 

Color represents condition c (nc=18).  

Fig. 5 shows that each condition has 30 samples, which 

is represented as the number of members nm=30 (set to be 

matched with section IV). A total of 13 points equally 

separeted on a slant line in Fig. 4, are test samples for 

confirming anomaly detection, whose condition values are 

the same to the crossing points in the distribution. 

 

 

Fig. 5. Sequential change of condition values (vertical 

axis) in Fig.4.  

The latent space distribution of the VAE has a shape 

similar to that in Fig. 4, and the test data points do not show 

a remarkable change in the anomaly score calculated as the 

distance from the distribution center (Fig. 6). 

 

 

Fig. 6. VAE anomaly score for the case of Fig.4. 

Fig. 7 shows the latent space distribution obtained by 

CVAE. Table.1 show the hyperparameter used, the input 

dimension M is 2, and the number of training points is 540. 

As the result of cluster-wise shifting illustrated in Fig. 2(d), 

the variance on both the horizontal and vertical axes 

become smaller. The test sample points appear as a slant 

line going out of the normal state distribution. At least 

seven outer sample points (five in the upper left and two in 

the lower right) can be easily detected as anomalies.  

 

 

Fig. 7. Two dimensional CVAE latent space map for the case of 

Fig.4. Variables z[0] and z[1] correspond to the latent space 

axes. 

Table 1. Hyperparameters for the VAE and the CVAE 

experimnts. 

conditions (C) 18 

layers 3 

intermediate nodes (IU) 16 

latent variables (D) 2 

activation linear 

epochs 1,000 

batch size 1 

optimizer Adam 

 

Fig. 8. shows the anomaly score obtained from the 

latent variables in Fig.7 by formula (3). Anomaly scores of 

the six test samples at the trailing end are larger than 3𝜎 

(red horizontal line) of the training normal state 

distribution.  

nm=30 
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Fig. 8. CVAE anomaly score calculated from Fig.7. 

 

 

Fig. 9. CVAE latent space map for different number of members 

(nm) 15/8/4/2. 

Fig.9 shows CVAE latent space distributions when the 

number of cluster members nm (=N/nc) for each condition 

is reduced to 15, 8, 4, and 2 to investigate the effect of 

training data size. If there are 4 or more sampes in each 

cluster, outer test samples can diverge greatly from the 

concentrated training distributions, similar to the 

distribution in Fig.7, though with some shape difference. 

Fig.10 shows CVAE latent space distributions when 

the number of conditions nc is reduced to 10, 5, 3, 2 

(settings are consistent with section IV measurement data). 

The total number of training samples is set to 540 so that 

the difference among distributions can be evenly observed. 

It can be seen that when nc increases, individuality of each 

cluster shape disappears and the anomaly score will be 

effective. 

 

Fig. 10. CVAE latent space map for different number of 

conditions (nc) 10,5,3,2. 
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 IV. REAL MESUREMENT 

The CVAE method described in the former sections 

was applied to real measurement data to check its validity. 

The data was collected on an induction motor (15 kW) 

which drives a water pump installed in an air conditioning 

facility. The rotation speed of the motor is dynamically 

changed depending on the air conditioning load as a 

variable-frequency drive. Thus, we can obtain data at 

multiple rotation speeds. 

An acceleration sensor was attached to the driving side 

bearing of the motor and used to collect 2048 time signals 

sampled at around 26kHz (count as one sample) once an 

hour. Then, each sample was converted to an amplitude 

spectrum (128 frequency points at around 100Hz intervals), 

and provided as parallel inputs to the CVAE encoder. A 

magnetic sensor was attached to the motor and used to 

collect alternating magnetic flux of the motor. Each sample 

of magnetic signals (once an hour) was also converted to 

an amplitude spectrum (128 frquency points at around 

0.2Hz intervals). Actual rotation speeds quantized into 18 

steps and converted to one hot encoded condition variables 

which were provided as the condition input (Fig. 11). 

 

 

Fig. 11. Rotation speed quantized into 18 steps. 

Hyperparameters for the CVAE are the same as 

Table.1 and the input dimension M is 128. The training 

samples are 540 points from the beginning of Fig. 11. The 

duration of the training samples is long compared to the 

total length because some rotation speeds do not appear or 

only appear a few times when we set the training duration 

shorter. If some condition-input samples were not included 

in the training data, the CVAE’s latent variables would be 

indefinite. So, we have to include some number of all 

condition-input samples in the training data. 

The sample at time sequence 565 corresponds to a 

rotation stop state, which we utilize to examine the quality 

of our anomaly score as it is a necessary condition for the 

sample to have a large deviation from the training samples. 

Fig. 12 shows the resulting VAE latent space map, in 

which each cluster is distributed continuously in a V shape. 

The CVAE result (Fig. 13) shows concentration of clusters 

near the origin of the latent space. Although the shapes of 

constituent clusters slightly differ depending on rotation 

speeds, the distributions can be recognized as one cluster, 

roughy. The isolated point (light blue in the lower right) in 

Fig.12 corresponds to the rotation stop state. Regardless of 

the rotation speed classified for the state by the speed 

calculation program, it will be greatly deviated from the 

distribution, and the anomaly score (Fig. 14) for the state 

is also remarkable (the outlier at 565 on the horizontal 

axis).  

      

Fig. 12. VAE latent space map (nc=18, color-coded by rotation 

speed). 

  

Fig. 13. CVAE latent space map corresponding to Fig.12. 

 

Fig. 14. Calculated anomaly score (540 training samples).  

Fig.15 shows the CVAE latent space map when nc is 

reduced to 10, 5, 3, and 2. The reduction is performed by 

reducing magnetic frequency points changing the FFT size 

by half, repeatedly. And the resulting actual number of 

rotation speeds were 10, 5, 3 and 2. It can be seen that when 

the nc increases, individuality of each cluster shape 

disappears as in Fig.10. Basically, the larger the nc is, the 

farther the stopping point is clearly distinguishable from 

the training distribution. 

nc=18 
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Fig. 15. CVAE latent space map for different number of 

conditions (nc) 10,5,3,2. 

 V. CONCLUSIONS AND FUTURE WORKS 

It is shown that CVAE method is valid for a model 

simulation and a real measurement analysis. The 

distribution of CVAE latent space is concentrated into one 

smaller distribution regardless of operating condition, and 

the anomaly score calculated as the normalized Euclid 

distance from the center of the normal distribution is 

effective for anomaly detection. If the number of samples 

per cluster is sufficient, the larger the number of clusters, 

the higher the anomaly score converges. 

Although we avoided the loss of training conditions by 

elongating training duration in section IV, there may be a 

possibility to interpolate non-existent condition-input by 

mixing two neiboring rotational spped conditions. 

Some latent space maps show oblique elongated 

ellipse shape. As the normalized Euclid distance is not a 

suitable anomaly measure for such distributions, we need 

to calculate a kind of Mahalanobis’ distance for smaller 

number of training samples and also with de-biasing 

functionality. 
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