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Abstract – Vibrations in road vehicles can have highly 

harmful effects on both the vehicle components and the 

passengers. These vibrations are mainly caused by low-

quality pavement, so it is important to keep the road 

network in good condition and to know its general 

quality. In our study, we present the development of a 

universally applicable, low-cost measurement system 

for the purpose of measuring the condition of pavement 

surfaces. The system can be used to identify road 

sections in urgent and near future need of maintenance, 

thus helping to schedule construction works efficiently. 

The system is based on an inertial sensor unit mounted 

on the vehicle suspension, in contrast to previous 

systems, and therefore offers an improvement in the 

accuracy of the measurement. In our study, a principal 

component analysis and time series segmentation-

based algorithm is introduced to extract relevant 

features from the raw sensor data. Subsequently, each 

segment is classified into pre-defined classes based on 

its surface quality using a binary decision tree-based 

classification model fitted by supervised learning. After 

validation, the system is tested on public roads under 

real measurement conditions. 
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 I. INTRODUCTION 

The quality of road surfaces has a major impact on 

vehicles, passengers, and traffic flows. Poor quality or 

uneven road surfaces increase the risk of failure of 

electronic and mechanical components of the vehicle, 

while vibrations in the human body can cause a short-term 

negative effects, such as reduction in travel comfort level 

and long-term damages to health [1][2]. Furthermore, as 

the degradation of the surface increases, the renovation 

costs increase at an exponential rate, which is explained by 

the deterioration curve [3][4]. Uneven road surfaces also 

affect the dynamics of vehicle movements. Traction 

conditions are primarily determined by terrain 

characteristics, with implications for longitudinal and 

lateral wheel slips [5][6]. 

 

Related to the listed reasons, it is essential to keep the 

road network in good condition and to repair any road 

defects as soon as possible. There are several methods 

available to measure road quality [7][8]. The most 

common method is still based on visual inspection, 

however the disadvantage of this method is the subjective 

and uncertain accuracy of monitoring [9][10]. The most 

accurate solution is offered by specially adapted 

measuring vehicles with a wide range of sensors, such as 

LIDAR and camera-based detection. These systems can 

provide very high accuracy mapping, although their 

operational costs are high, thus limiting their application 

[11]. 

 

Recently, a significant amount of research has been 

dedicated to the development of road quality measurement 

systems based on alternative methods. These usually use 

one or two sensors for detection, and then data processing 

is done by various software-sensor solutions. These newer 

systems can therefore approach or even reach the accuracy 

of conventional, more expensive systems, making them a 

good alternative for monitoring lower-grade or less 

frequented roads [12]. 

 

These systems usually use vibration sensors, such as 

single-axis accelerometers or inertial measurement units 

(IMU) mounted in the passenger cabin, and in many cases 

only a smartphone-based data collection was 

implemented, which allowed a low-cost and simple 

application [13][14]. In our previous study [15], we 

developed a data collection system to examine data from 

the cabin and suspension, which showed that the latter had 
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a higher useful information content. This is due to the 

damping and spring elements between the suspension and 

the cabin can significantly modify the frequency and 

reduce the amplitude of the vibrations that occur [16]. 

Based on this, by collecting data directly on the 

suspension, the accuracy of these systems can be increased 

further, and the depth of the machine learning model can 

be decreased, allowing faster data processing and less 

power consumption. 

 

Given the problems described, this work aims to 

develop and implement a universally applicable, compact 

and low-cost measurement system with an input from a 

suspension-mounted IMU sensor. We also investigate the 

possible causes of measurement errors and thus the 

possibilities for increasing accuracy, the principles of 

which will be implemented in the development. Based on 

data from a multi-axis accelerometer and gyroscope, the 

device is able to classify road sections of varying lengths, 

coherent in pavement surface quality into three quality 

classes using a soft-sensor based architecture. 

 II. PREVIOUS VIBRATION-BASED PAVEMENT 

MONITORING METHODS 

Several studies have been carried out on pavement 

damage detection systems based on vibration data. The 

measurement principle is based on the motions caused by 

surface irregularities, on which a good estimation of the 

road surface quality can be obtained [1]. Road defects 

cause mainly vertical, namely Z-direction movements of 

the vehicle, however, both the vertical and longitudinal 

position of the wheel changes during vibration [17]. As a 

result, the forces due to the irregularity of the road will 

accelerate the body of the vehicle both longitudinally and 

vertically. Therefore, displacements along 3 axes need to 

be detected, which can be implemented in a compact form 

using an IMU sensor. 

Previous studies have developed various methods for 

processing the raw measurement data from the cabin. The 

main part of the studies is based on the selection of relevant 

features and the fitting and validation of the machine 

learning model. Feature extraction can be used to reduce 

the dimensionality of the data sets, help extract relevant 

information and reduce irrelevant measurement noise and 

errors. Frequently used features are Fourier transform and 

frequency domain analysis and the related power spectral 

density-based classification. These reflects accurately to 

road irregularities and have a strong correlation between 

road unevenness and vehicle body ride vibration response 

[8][18]. Along with these, several studies have used 

principal component analysis for dimensionality reduction 

with good results. The classification algorithms applied 

have varied, with many using support vector machine, 

neural network or decision tree models. The average 

accuracy of these models is close to 85%, while the range 

is between 72% and 90%.  

 III. SUSPENSION VIBRATION BASED SOFTWARE 

SENSOR DEVELOPMENT  

We have developed the system by considering the 

above aspects, the main details of which are presented in 

this chapter. 

A. Applied measurement system 

The device needs to be capable of tolerating any 

mechanical impacts, therefore a robust, compact, simple to 

install and operate type was required. The custom 

measurement system is based on an NGIMU unit from X-

IO Technologies, which includes a 3-axis accelerometer, 

gyroscope and magnetometer sensor. A NEO-7M GPS 

unit was connected to the IMU unit via a serial 

communication link to record vehicle position data. 

 

1. Figure Position of the sensors on the test vehicle 

 

The IMU sensor is mounted on the rear control arm of 

the vehicle, so that there is no damping element between 

the wheel and the detector, and the vibrations are directly 

measured by the device. The positioning of the sensors on 

the test vehicle and the orientation of the axes is illustrated 

in Fig. 1. We installed the IMU sensor on the left side of 

the test vehicle, as our experience shows that the road 

surface on the outside is often worse, more degraded, with 

more frequent larger potholes. These give us a more 

realistic representation of the general condition of the road 

surface on the inner side. 
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B. Data processing and feature extraction 

The first step of the data processing was the labelling 

of the raw data, where 3 classes were defined. Each 

category represents the road surface quality of each road 

section as follows: 

• Class 1: The road surface requires urgent 

renovation, with large and deep defects 

continuously observed along the section. The 

road structure is characterised by sinkholes, 

subsidence, surface and deep potholes and cracks 

at the pavement edge. 

• Class 2: The surface quality of the sections is 

medium and is expected to be reconstructed in the 

near future. Minor potholes and surface 

irregularities occurs. 

• Class 3: Near fault-free pavement, section quality 

in good condition, no reconstruction work 

expected in the near future. 

During data processing, it is necessary to resample the 

GPS signal, as its sampling frequency is lower than the 

vibration data. After this, the GPS data were smoothed to 

remove noise using a moving average filter. In addition, 

the vibration data were filtered using a highpass filter for 

detrending, thereafter the vibration and angular velocity 

measurement data transformed to the same scale using a 

min-max scaler. Furthermore, within the basic signal 

processing, the original time-dependent signal was 

resampled as a function of the distance travelled by the 

vehicle. Previous studies have shown that increasing 

vehicle speed increases the amplitude of the measured 

accelerations over the same quality surface. This effect can 

be reduced by distance-based resampling. The new data 

points were recorded at a distance of 0.35 m using 

interpolation. 

Informative features are necessary to develop a well-

performing machine learning model, for this, we 

transformed the vibration data from the time-domain into 

frequency-based data using power spectral density (PSD) 

analysis, in the form of a spectrogram. The Power Density 

Spectrum function transforms a signal from the time 

domain to the frequency domain and provides its 

frequency spectrum. Digital Signal Processing offers a lot 

of methods to extract this information, like Fast Fourier 

Transformation (FFT). 

Following this principal component analysis (PCA) 

obtained dimensionality reduction and extract relevant 

information as well as reduce measurement noise. 

Principal component analysis was performed by centering 

the data and then performing a singular value 

decomposition algorithm. PCA helps to reflect the main 

aspects of the key variables, thereby providing improved 

possibility of segmentation of sections with different road 

pavement qualities. This requires the use of a time series 

segmentation algorithm based on series segmentation, 

which focuses on dividing the time series into appropriate, 

internally homogenous segments through rule discovery in 

the behaviour of the observed variable. The segmentation 

algorithm identifies abrupt changes in the series based on 

trimmed mean and variance features using a sliding 

window method. The accelerometer output of IMU sensors 

is commonly affected by high frequency and high 

amplitude noise, which in some cases is difficult to 

separate from the useful signal. Time series segmentation 

can be used to filter out these low duration but high 

amplitude data errors, as longer duration features will be 

dominant. The developed segmentation algorithm 

separates coherent sections based on the mean and 

variance of the data series. In order to validate the 

algorithm, we manually labelled the segment boundaries 

on the data series, and determined their position based on 

our visual observations. We were then able to verify the 

correctness of the automatic labelling. 

C. Classification model 

After performing time-series segmentation, each 

coherent section is classified into one of the three 

categories defined above. Several algorithms were tested, 

and the binary decision tree classifier provided the best 

accuracy. For finding the optimal algorithm, various split 

predictors, such as the CART, QUEST, and GUIDE 

algorithms have been examined, but the CART algorithm 

proved to be the most effective and was therefore chosen. 

 

2. Figure Schematic overview of the data processing algorithm 

The model is fitted in a supervised learning 

environment, validated by train-test set splitting method. 

The advantages of decision-tree based classification 

include simplicity to interpret, low data pre-processing 

requirements and low computational power, and that 

outliers have no meaningful effect, which is a significant 

consideration in our case. To ensure the robustness of the 

model, the dataset is split into a training and a test set in 

70/30 ratio, where the training set is used to fit the model. 

Thereafter, the test set gives a sense of how the model 

performs on unseen data. The data processing and 
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classification algorithm was developed in MATLAB 

environment and the schematic representation of the 

algorithm is shown in Fig. 2. 

 IV. RESULTS AND DISCUSSIONS 

A. Measurement conditions 

The measurement system was developed and tested in 

a real-world environment using two different passenger 

vehicles with significantly different suspension 

characteristics. A 2019 Nissan Leaf hatchback and a 1997 

BMW 318is sedan were used. The former's rear 

suspension consists of a torsion beam with trailing arms 

and separate spring and damper, while the latter has fully 

independent multilink trailing arms and also separate 

spring and damper elements with much higher rigidity. 

 

The measurements were carried out on predefined and 

public road network in both residential and suburban areas. 

This allowed measurements to be carried out on road 

surfaces of different quality, covering all categories, with 

varying vehicle speeds. 

 

Furthermore, the system was tested with different 

placements of the IMU sensor, which was placed on the 

other side of the suspension and on different longitudinal 

control arms. However, the most accurate solution was 

obtained using the original placement. 

B. Results of feature extraction and classification 

Following the basic data processing steps, the power 

spectrum data showed the noticeable quality segment 

bands. The bands of PSD with higher power sections 

represent the lower quality pavement on which relative 

high amplitude vibrations are generated. The power 

spectral density spectrogram calculated for the Z-axis 

accelerometer sensor data series is shown in Figure 3. In 

these data, the different power sections mentioned above 

can be clearly observed, on the basis of which further work 

was discarded. 

 

 

3. Figure Power spectrum of the IMU Z-axis accelerometer 

The calculation of power spectral density was followed 

by principal component analysis, which helped to reduce 

the 9-dimensional data set into one dimension containing 

the information relevant for classification. 

 

The PCA vectors represent the useful information 

content of each variable, and therefore meaningful data are 

the angular velocity around the gyroscope's X axis and the 

linear accelerations along the Y axis in addition to the 

accelerometer's Z axis. Furthermore, according to the 

orientation of the axes, they have different but useful 

information content. Furthermore, the PCA analysis shows 

that the first principal component account for 93% of the 

total variation, which means that the dimension of the 

dataset can be reduced with minor loss. Therefore, the 

original data set was further reduced to the first component 

score vector. 

 

After the principal component analysis, the boundaries 

of each coherent section were determined using the time 

series segmentation algorithm, and subsequently the 

binary classification decision tree model was fitted. 

 

The labelled and detected changepoints with the time 

series segmentation algorithm are shown in Fig. 4, where 

the data series as input to the algorithm is also displayed. 

From the figure it can be observed that the boundaries of 

the original segments marked in red and the detected 

segments marked in blue are well matched, with only a few 

minor deviations.  
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4. Figure Detected changepoints and the original labelled 

points according to time series segmentation 

 

After the time series segmentation algorithm was 

developed, the classification model was designed and 

optimized. In this context, to prevent overfitting, pruning 

method has been applied to set the optimal depth of the 

decision tree model, furthermore the optimal 

hyperparameter settings have been determined. The 

maximum depth of the decision tree model is 14, a 

reduction of about 12% compared to our previous system. 

Training and validation have been performed using the 

train-test split method. The accuracy of the model based 

on the test dataset for unseen data is near to 92% according 

to confusion matrix, and the highest number of 

misclassifications occurred between Class 2 and 3. The 

model confusion matrix is illustrated in Fig. 5, which also 

shows the locations of misclassification. Furthermore, it 

can be seen that most of the data values fall into the second 

class, as this medium-quality road surface was the most 

frequent during the test drive. 

 

5. Figure Confusion matrix of the machine learning model 

 

C. Results of public road measurements 

The developed system using the developed 

classification algorithm was tested on the surface of public 

roads, on predefined routes not included in the training 

stage. The total testing distance for the two vehicles was 

more than 100 km. For further validation, the test phases 

were performed three consecutive times and the 

classification results were compared. 

 

The measured quality of a suburban section is shown 

in Fig. 6 in map visualisation, where the route is 

represented by the three colours for each class. During the 

test case, speeds typically varied between 50 and 90 km/h 

per hour, and this measurement was carried out with the 

sedan type vehicle. 

 

6. Figure Measurement results of a suburban road section in 

map visualisation 

The results of the measurement show that there are 

several degraded road sections, some of which are in 

urgent need of reconstruction. Only a short area is 

observed to be of good quality. The measurement result is 

consistent with our visual observations, with numerous 

potholes, cracks and surface depressions observed during 

the measurement. 

 

On this road section, the measurement was also carried 

out three times per vehicle and the results were compared. 

The comparison was made by road quality class, based on 

the length of each section. Their mean and standard 

deviation are shown in Table 1. 

1. Table Sum of mean and standard deviation of segment 

lengths, according to pavement quality classes 

 

Sum of mean 

segment lengths 

[km] 

Standard 

deviation of 

segment lengths 

[km] 

Class 1 4.3 0.2 

Class 2 11.2 0.9 

Class 3 0.8 0.1 
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The results show that the largest variance was in the 

Class 2 category, while the Class 1 class showed the largest 

proportional similarity. This can be explained by the 

typical good and clear separation of the worst quality 

sections from the other two classes. 

 V. CONCLUSIONS 

In our study we presented the development of a 

measurement system for pavement surface quality.  

Previous studies have focused on the development of 

simple road quality measurement devices, often based on 

a mobile phone. However, in our previous work we have 

shown that measuring on a suspension has a more relevant 

information content, with clearer signals being observed. 

Based on this, the current system is based on an IMU 

sensor mounted on a suspension of test vehicles, which 

allows to increase its accuracy. The data processing and 

classification of each individual section is performed with 

the support of software sensor and machine learning 

algorithm. The signal processing system includes a time 

series segmentation algorithm to filter outliers. The dataset 

dimension is further reduced using principal component 

analysis. By positioning the IMU sensor on the axis, we 

have been able to reduce the size of the classification 

algorithm compared to our previous system, which can 

reduce the computational requirements. 

Real test measurements with two vehicles following 

validation showed good results, with good agreement with 

our visual inspections, making us confident that the 

developed IMU could be a good and cost-effective 

alternative for measuring road surface quality on lower-

grade roads. 
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